Skip to main content

Leaf to Landscape

  • Chapter
Book cover Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

The capacity of terrestrial plant leaves for photosynthetic CO2 fixation per unit gram of leaf varies over 10-fold (Reich et al. 1997). The results of CO2 fixation, processing and subsequent accumulation of mass (Fig. 8.1) gives plants the most enormous variation in size of organisms on earth (Niklas and Enquist 2001). The variation in photosynthetic capacity and in leaf form among species of higher plants attests to strong adaptation to different environments, in combination with exaptation and ecological sorting, by selection for traits that enable plants to survive and thrive in even the earth’s extreme climates. Thus, diverse adaptations to permit photosynthetic carbon assimilation and utilization at the leaf and canopy level among different environments, as well as the synchronization of downstream metabolic processing of this carbon for growth and other functions, can be considered important drivers of biological diversity from a functional perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J. D., Reich, P. B., and Goulden, M. L. 1996. Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis validated by eddy correlation. Oecologia 106:267–275.

    Article  Google Scholar 

  • Ainsworth, E. A., Davey, P. A., Hymus, G. J., Osborne, C. E., Rogers, A., Blum, H., Nosberger, J., and Long, S. E. 2003. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant Cell Environ. 26:705–714.

    Article  CAS  Google Scholar 

  • Amthor, J. S. 1994. Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth. Res. 39:321–350.

    Article  CAS  Google Scholar 

  • Arp, W. J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 14:869–875.

    Article  CAS  Google Scholar 

  • Azcon-Bieto, J. 1983. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol. 73:681–686.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, G. A., Berntson, G. M., and Bazzaz, F. A. 2001. Regenerating temperate forests under elevated CO2 and nitrogen deposition: Comparing biochemical and stomatal limitation of photosynthesis. New Phytologist 152:249–266.

    Article  CAS  Google Scholar 

  • Canadell, J. G., Mooney, H. A., Baldocchi, D. D., Berry, J. A., Ehleringer, J. R., Field, C. B., Gower, S. T., Hollinger, D. Y., Hunt, J. E., Jackson, R. B., Running, S. W., Shaver, G. R., Steffen, W., Trumbore, S. E., Valentini, R., and Bond, B. Y. 2000. Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3:115–130.

    Article  CAS  Google Scholar 

  • Castro-Diaz, P., Puyravaud, J. P., and Cornelissen, J. H. C. 2000. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124:476–486.

    Article  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Tomlinson, J. R., and Ni, J. 2001. Measuring net primary production in forests: Concepts and field methods. Ecol. Appl. 11:356–370.

    Article  Google Scholar 

  • dePury, D. G. G., and Farquhar, G. D. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20:537–557.

    Article  Google Scholar 

  • Dewar, R. C., Medlyn, B. E., and McMurtrie, R. E. 1998. A mechanistic analysis of light and carbon use efficiencies. Plant Cell Environ. 21:573–588.

    Article  Google Scholar 

  • Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P. 1997. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Molec. Biol. 48:609–639.

    Article  CAS  Google Scholar 

  • Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19.

    Article  Google Scholar 

  • Falge, E., Baldocchi, D., Tenhunen, J. D., Aubinet, M., Berbigier, P., Bernhofer. C., Burba. G., Clement, R., Davis, K., and et. al. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol. 113:53–74.

    Article  Google Scholar 

  • Farquhar, G. D. 1989. Models of integrated photosynthesis of cells and leaves. Philos. Trans. R. Soc. Lond. [Biol.] 323:357–367.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., von Caemmerer, S., and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  CAS  Google Scholar 

  • Farrar, J., Pollock, C., and Gallagher, J. 2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci. 154:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, J. F. 1996. Sinks—Integral parts of a whole plant. J. Exp. Bot. 47:1273–1279.

    CAS  Google Scholar 

  • Field, C. B., and Mooney, H. A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function. T. J. Givnish (ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Friend, A. D. 2001. Modelling canopy CO2 fluxes: Are “big-leaf” simplifications justified? Global Ecol. Biogeog. 10:603–619.

    Article  Google Scholar 

  • Hikosaka, K., and Hirose, T. 1998. Leaf and canopy photosynthesis of C3 plants at elevated CO2 in relation to optimal partitioning of nitrogen among photosynthetic components: Theoretical prediction. Ecol. Model. 106:247–259.

    Article  CAS  Google Scholar 

  • Jach, M. E., and Ceulemans, R. 2000. Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). Tree Physiol. 20: 145–157.

    PubMed  CAS  Google Scholar 

  • Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., and Buchmann, N. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol. 7:269–278.

    Article  Google Scholar 

  • Jarvis, P. G. 1976. Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos. Trans. R. Soc. Lond. [Biol.] 273:593–610.

    Article  CAS  Google Scholar 

  • Körner, C. 2000. Biosphere responses to CO2 enrichment. Ecol. Appl. 10:1590–1619.

    Google Scholar 

  • Lamhers, H., and Poorter, H. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:188–261.

    Google Scholar 

  • Law, B. E., Cescatti, A., and Baldocchi, D. D. 2001. Leaf area distribution and radiative transfer in open-canopy forests: Implications for mass and energy exchange. Tree Physiol. 21:777–787.

    PubMed  CAS  Google Scholar 

  • Long, S. P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentration: Has its importance been underestimated? Plant Cell Environ. 14:729–740.

    Article  CAS  Google Scholar 

  • Lowman, M. D., and Nadkarni, N. M. 1995. Forest Canopies. San Diego: Academic Press.

    Google Scholar 

  • Medlyn, B. E., Badeck, F. W., de Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M. E., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Roberntz, P., Wang, K., and Jarvis, P. G. 1999. Effects of elevated CO2 on photosynthesis in European forest species: A meta-analysis of model parameters. Plant Cell Environ. 22:1475–1495.

    Article  CAS  Google Scholar 

  • Meir, P., Kruijt, B., Broadmeadow, M., Barbosa, E., Kull, O., Carswell, F., Nobre, A., and Jarvis, P. G. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25:343–357.

    Article  Google Scholar 

  • Moore, B. D., Cheng, S. H., Sims, D., and Seemann, J. R. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 22:567–582.

    Article  CAS  Google Scholar 

  • Niinemets, Ü. 1999. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144:35–47.

    Article  Google Scholar 

  • Niinemets, U., and Tenhunen, J. D. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20:845–866.

    Article  Google Scholar 

  • Niklas, K. J., and Enquist, B. J. 2001. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc. Natl. Acad. Sci. USA 98:2922–2927.

    Article  PubMed  CAS  Google Scholar 

  • Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. A., and Ceulemans, R. 1999. Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant Cell Environ. 22:683–714.

    Article  CAS  Google Scholar 

  • Nowak, R. S., Ellsworth, D. S., and Smith, S. D. 2004. Plant functional responses to elevated CO2: Do data from FACE support early predictions? Tansley Review. New Phytologist.

    Google Scholar 

  • Peterson, A. G., Ball, J. T., Luo, Y., Field, C. B., Curtis, P. S., Griffin, K. L., Gunderson, C. A., Norby, R. J., Tissue, D. T., Forstreuter, M., Rey, A., and Vogel, C. S. 1999. Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant Cell Environ. 22:1109–1119.

    Article  CAS  Google Scholar 

  • Reich, P. B., and Walters, M. B. 1994. Photosynthesis-nitrogen relations in Amazonian tree species. 2. Variation in nitrogen vis-a-vis specific leaf area influences mass-based and area-based expressions. Oecologia 97:73–81.

    Article  Google Scholar 

  • Reich, P. B., Walters, M. B., Ellsworth, D. S., and Uhl, C. 1994. Photosynthesis-nitrogen relations in Amazonian tree species. 1. Patterns among species and communities. Oecologia 97:62–72.

    Article  Google Scholar 

  • Reich, P. B., Walters, M. B., and Ellsworth, D. S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94:13730–13734.

    Article  PubMed  CAS  Google Scholar 

  • Reich, P. B., Ellsworth, D. S., and Walters, M. B. 1998. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 12:948–958.

    Article  Google Scholar 

  • Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., and Bowman, W. D. 1999. Generality of leaf trait relationships: A test across six biomes. Ecology 80:1955–1969.

    Article  Google Scholar 

  • Roderick, M. L., Berry, S. L., and Noble, I. R. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct. Ecol. 14:423–437.

    Article  Google Scholar 

  • Rogers, A., and Ellsworth, D. S. 2002. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO(2) (FACE). Plant Cell Environ. 25:851–858.

    Article  CAS  Google Scholar 

  • Sage, R. F. 1994. Acclimation of photosynthesis to increasing atmospheric CO2—The gas exchange perspective. Photosynth. Res. 39:351–368.

    Article  CAS  Google Scholar 

  • Sage, R. F., and Monson, R. 1999. C4 Plant Biology. San Diego: Academic Press.

    Google Scholar 

  • Sage, R. F., Sharkey, T. D., and Seemann, J. R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89.

    Google Scholar 

  • Saxe, H., Ellsworth, D. S., and Heath, J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139:395–436.

    Article  Google Scholar 

  • Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, T. R., Murphy, C. E. J., and Knoerr, K. R. 1976. Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J. Appl. Ecol. 11:617–636.

    Google Scholar 

  • Stitt, M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14:741–762.

    Article  CAS  Google Scholar 

  • Stitt, M. and Krapp, A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environ. 22:583–621.

    Article  CAS  Google Scholar 

  • Tissue, D. T., Griffin, K. L., Turnbull, M. L., and Whitehead, D. 2001. Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiol. 21:915–923.

    PubMed  CAS  Google Scholar 

  • Walcroft, A., Whitehead, D., Silvester, W. B., and Kelliher, F. M. 1997. The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant Cell Environ. 20:1338–1348.

    Article  CAS  Google Scholar 

  • Waring, R. H., Landsberg, J. J., and Williams, M. 1998. Net primary production of forests: A constant fraction of gross primary production? Tree Physiol. 18:129–134.

    PubMed  Google Scholar 

  • Woodward, F. I., Smith, T. M., and Emanuel, W. R. 1995. A global land primary productivity and phytogeography model. Global Biogeochem. Cycles 9:471–490.

    Article  CAS  Google Scholar 

  • Wright, I. J., and Westoby, M. 2002. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytologist 155:403–416.

    Article  Google Scholar 

Appendix 1.

  • Anthoni, P. M., Law, B. E., and Unsworth, M. H. 1999. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agric. For. Meteorol. 95:51. (13)

    Article  Google Scholar 

  • Arneth, A., Kelliher, F. M., McSeveny, T. M., and Byers, A. N. 1999. Assessment of annual carbon exchange in a water-stressed Pinus radiata plantation: An analysis based on eddy covariance measurements and an integrated biophysical model. Global Change Biol. 5:531–545. (7)

    Article  Google Scholar 

  • Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E. 2001. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 108:293–315. (14)

    Article  Google Scholar 

  • Baldocchi, D. D., and Harley, P. C. 1995. Scaling carbon-dioxide and water-vapor exchange from leaf to canopy in a deciduous forest. 2. Model testing and application. Plant Cell Environ. 18:1157. (23)

    Article  Google Scholar 

  • Bassow, S. L., and Bazzaz, F. A. 1997. Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109:507–515. (17)

    Article  Google Scholar 

  • Berbigier, P., Bonnefond, J. M., and Mellmann, P. 2001. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric. For. Meteorol. 108:183–197. (11)

    Article  Google Scholar 

  • Black, T. A., DenHartog, G., Neumann, H. H., Blanken, P. D., Yang, P. C., Russell, C., Nesic, Z., Lee, X., Chen, S. G., Staebler, R., and Novak, M. D. 1996. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol. 2:219. (5)

    Article  Google Scholar 

  • Carswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., Nobre, A. D., Grace, J., and Jarvis, P. G. 2000. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20:179–186. (25)

    PubMed  Google Scholar 

  • Chen, W. J., Black, T. A., Yang, P. C., Barr, A. G., Neumann, H. H., Nesic, Z., Blanken Z., Novak M. D., Eley, J., Ketler, R. J., and Cuenca, A. 1999. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest, Global Change Biol. 5:41. (5)

    Article  CAS  Google Scholar 

  • Chen, J., Falk, M., Euskirchen, E., Paw, U. K.-T., Suchanek, T. H., Ustin, S. L., Bond, B. J., Brosofske, K. D., Phillips, N., and Bi, R. 2002. Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurements. Tree Physiol. 22:169–177. (15)

    PubMed  CAS  Google Scholar 

  • Clark, K. L., Gholz, H. L., Moncrieff, J. B., Cropley, F., and Loescher, H. W. 1999. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems. Ecol. Appl. 9:936. (9)

    Article  Google Scholar 

  • Dolman, A. J., Moors, E. J., and Elbers, J. A. 2002. The carbon uptake of a mid latitude pine forest growing on sandy soil. Agric. For. Meteorol. 111:157–170. (12)

    Article  Google Scholar 

  • Flanagan, L. B., Wever, L. A., and Carlson, P. J. 2002. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biol. 8:599–615. (2)

    Article  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C. 1996. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271:1576. (17)

    Article  CAS  Google Scholar 

  • Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Massheder, J., Wright, I., and Gash, J. 1995a. Fluxes of carbon dioxide and water-vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol. 1:1–12. (24)

    Article  Google Scholar 

  • Grace, J., Lloyd, J., Mcintyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., and Gash, J. 1995b. Carbondioxide uptake by an undisturbed tropical rain-forest in southwest amazonia, 1992 to 1993. Science 270:778–780. (24)

    Article  CAS  Google Scholar 

  • Granier, A., Ceschia, E., Damesin, C., Dufrene, E., Epron, D., Gross, P., Lebaube, S., le Dantec, V., le Goff, N., Lemoine, D., Lucot, E., Ottorinin, J. E., Pointailler, J. Y., and Saugier, B. 2000. The carbon balance of a young beech forest. Funct. Ecol. 14:312–325. (18,21)

    Article  Google Scholar 

  • Greco, S., and Baldocchi, D. D. 1996. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol. 2:183. (23)

    Article  Google Scholar 

  • Harley, P. C., and Baldocchi, D. D. 1995. Scaling carbon-dioxide and water-vapor exchange from leaf to canopy in a deciduous forest. 1. Leaf model parametrization. Plant Cell Environ. 18:1146. (23)

    Article  Google Scholar 

  • Hollinger, D. Y., Goltz, S. M., Davidson, E. A., Lee, J. T., Tu, K., and Valentine, H. T. 1999. Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest. Global Change Biol. 5:891. (10)

    Article  Google Scholar 

  • Katul, G., Oren, R., Ellsworth, D., Hsieh, C. I., Phillips, N., and Lewin, K. 1997. A Lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. J. Geophys. Res.-Atmos. 102:9309. (8)

    Article  CAS  Google Scholar 

  • Lai, C. T., Katul, G., Butnor, J., et al. 2002. Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biol. 8:124–141. (8)

    Article  Google Scholar 

  • Law, B., Williams, M., Anthoni, P., Baldocchi, D. D., and Unsworth, M. H. 2002. Measuring and modeling seasonal variation of carbon dioxide and water vapor exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biol. 6:613. (13)

    Article  Google Scholar 

  • Lee, X. H., Fuentes, J. D., Staebler, R. M., and Neumann, H. H. 1999. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. J. Geophys. Res.-Atmos. 104:15975. (16)

    Article  CAS  Google Scholar 

  • Lindroth, A., Grelle, A., and Moren, A. S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4:443–450. (4)

    Article  Google Scholar 

  • Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A., and Scott, S. 1998. Carbon dioxide transfer over a Central Amazonian rain forest. J. Geophys. Res.-Atmos. 103:31593–31612. (25)

    Article  CAS  Google Scholar 

  • Malhi, Y., Baldocchi, D. D., and Jarvis, P. G. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22:715. (3,23)

    Article  CAS  Google Scholar 

  • Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E. 2002. Carbon sequestration in a high-elevation, subalpine forest. Global Change Biol. 8:459–478. (1)

    Article  Google Scholar 

  • Pilegaard, K., Hummelshøj, P., Jensen, N. O., and Chen, Z. 2001. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agric. For. Meteorol. 107:29–41. (20)

    Article  Google Scholar 

  • Randerson, J. T., Chapin, F. S., III, Harden, J. W., Neff, J. C., and Harmon, M. E. 2002. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol. Applic. 12:937–947. (3,23)

    Article  Google Scholar 

  • Schmid, H. P., Cropley, F., Su, H.-B., Offerle, B., and Grimmond, C. S. B. 2000. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the midwestern United States. Agric. For. Meteorol. 103:355. (22)

    Article  Google Scholar 

  • Valentini, R., Matteucci, G., Dolman, A. J., et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature. 404:861–865. (11,12,14,18,19,20)

    Article  PubMed  CAS  Google Scholar 

  • Vygodskaya, N. N., Milyukova, I., Varlagin, A., Tatarinov, F., Sogachev, A., Kobak, K. I., Desyatkin, R., Bauer, G., Hollinger, D. Y., Kelliher, F. M., and Schulze, E.-D. 1997. Leaf conductance and CO2 assimilation of Larix gmelinii growing in eastern Siberian boreal forest. Tree Physiol. 17:607–615. (6)

    PubMed  Google Scholar 

  • Wallin, G., Linder, S., Lindroth, A., Rantfors, M., Flemberg, S., and Grelle, A. 2001. Carbon dioxide exchange in Norway spruce at the shoot, tree and ecosystem scale. Tree Physiol. 21:969–976. (4)

    PubMed  CAS  Google Scholar 

  • Wilson, K. B., and Baldocchi, D. D. 2001. Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. J. Geophys. Res.-Atmos. 106:34167–34178. (23)

    Article  CAS  Google Scholar 

  • Wilson, K. B., Baldocchi, D. D., and Hanson, P. J. 2000. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20:565. (23)

    PubMed  Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A. 1993 Net exchange of CO2 in a mid-latitude forest. Science. 260:1314–1317. (17)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Ellsworth, D.S., Niinemets, Ü., Reich, P.B. (2004). Leaf to Landscape. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics