Skip to main content

Background and Objectives

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Photosynthesis is the fundamental process whereby plants capture and process sunlight and CO2 as primary ecological resources supporting the growth and reproduction of an individual, and, ultimately, the survival of a species. Moreover, adaptations in resource acquisition and utilization are recognized as strong candidates for evolutionary selection in all species (Ackerly and Monson 2003a, Gutschick and BassiriRad 2003). Across the hierarchy of structural organization and spatial scale, extending from the chloroplast to the canopy and landscape, the efficiency of photosynthetic carbon assimilation declines substantially when assimilation is expressed per unit of plant biomass invested. For example, photosynthesis per unit mass is greatest for a single chloroplast, followed by a single cell, different cell layers, individual leaves, leaves arranged on a stem, and then leaves within crowns and canopies due, primarily, to increasing architectural constraints that require greater supportive biomass and generate increased mutual shading. Increasing size and accompanying structural complexity also place contraints on diffusional processes that require replacement by bulk transfer mechanisms. Thus, photosynthesis per unit biomass and ground area across any vegetative landscape is dramatically less than a hypothetical monolayer of all of the chloroplasts present, with each chloroplast photosynthesizing at its maximum capacity. Apparently, the adaptive advantages of size and greater structural/spatial complexity are most often related to a competition for sunlight that, apparently, outweighs any loss in photosynthetic efficiency expressed on an invested biomass basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J. D., Reich, P. B., and Goulden, M. L. 1996. Extrapolating leaf CO2 exchange to the canopy: A generalized model of photosynthesis compared with measurements by eddy correlation. Oecologia 106:257–265.

    Article  Google Scholar 

  • Ackerly, D. D., and Monsoon, R. K. (eds.) 2003a. Evolution of functional traits in plants. Chicago: University of Chicago Press.

    Google Scholar 

  • Ackerly, D. D., and Monson, R. K. 2003b. Waking the sleeping giant: The evolutionary foundation of plant function. Int. J. Plant Sci. 164(Suppl.):1–6.

    Article  Google Scholar 

  • Ackerly, D. D., Dudley, S. A., Sultan, S. E., Schmit J., Coleman, C. R., Linder, C. R., Sandquist, D. R., et al. 2000. The evolution of plant ecophysiological traits: Recent advances and future directions. BioScience 50:979–995.

    Article  Google Scholar 

  • Baker, N. R. (ed.) 1996. Photosynthesis and the Environment. Advances in Photosynthesis and Respiration Series. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Baker, N. R., and Bowyer, J. R. 1994. Photoinhibition of Photosynthesis—From Molecular Mechanisms to the Field. Environmental Plant Biology Series. Oxford: Bios Scientific Publishers Limited.

    Google Scholar 

  • Clegg, M. T., Learn, G. H., and Morton, B. R. 1995. Rates and patterns of chloroplast DNA evolution. In: Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson, pp. 215–226. Washington D.C.: National Academy of Sciences.

    Google Scholar 

  • Ehleringer, J. R., and Field, C. B. (eds.) 1993. Scaling Physiological Processes. New York: Academic Press.

    Google Scholar 

  • Falkowski, P. G., 1994 The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosyn. Res. 39:235–258.

    Article  CAS  Google Scholar 

  • Field, T. S., Arens, N. C., and Dawson, T. E. 2003. The ancestral ecology of angiosperms: Emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164(Suppl.): S129–S142.

    Article  Google Scholar 

  • Garab, G. (ed.) 1998. Photosynthesis: Mechanisms and Effects, Vol. V. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Geber, M. A., and Griffen, L. R. 2003. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164(Suppl.):1–6.

    Google Scholar 

  • Gutschick, V. P., and BassiriRad, H. 2003. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytologist 160:21–42.

    Article  Google Scholar 

  • Hall, D. O., and Rao, K. K. (eds.) 1999. Photosynthesis, 6th ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hill, J. P., Willson, C. J., and Smith, W. K. 2004. Morphotype ecophysiology enhances reproductive effort in a shrub steppe. Plant Ecol. (in press).

    Google Scholar 

  • Leegood, R. C., Sharkey, T. D., and von Cammerer, S. 2000. Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis and Respiration Series. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Monson, R. K. 2003. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164(Suppl.):43–54.

    Article  Google Scholar 

  • Mooney, H. A. 1991. Plant physiological ecology: Determinants of progress. Funct. Ecol. 5:127–135.

    Article  Google Scholar 

  • Orr, L., and Govindjee, R. 2001. Photosynthesis and the web: 2001. Photosyn. Res. 68:1–28.

    Article  CAS  PubMed  Google Scholar 

  • Osmond, C. B., Björkman, O., and Anderson, D. J. (eds.) 1980. Physiological Processes in Plant Ecology. New York: Springer-Verlag.

    Google Scholar 

  • Remington, D. L., and Purugganan, M. D. 2003. Candidate genes, quantitative trait loci, and functional trait evolution in plants. Int. J. Plant Sci. 164(Suppl.):7–20.

    Article  Google Scholar 

  • Sage, R. F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 3:202–213.

    Article  CAS  Google Scholar 

  • Sage, R. F. 2004a. The evolution of C4 photosynthesis. New Phytologist 161:341–370.

    Article  CAS  Google Scholar 

  • Sage, R. F. 2004b. Atmospheric CO2, environmental stress and the evolution of C4 photosynthesis. In: A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. J. R. Ehleringer, T. E. Cerling, and D. Dearling, (eds.) (in press).

    Google Scholar 

  • Schulze, E.-D., and Caldwell, M. M. 1995. Ecophysiology of Photosynthesis. New York: Springer-Verlag.

    Google Scholar 

  • Smith, W. K., Vogelmann, T. C., Bell, D. T., DeLucia, E. H., and Shepherd, K. A. 1997. Leaf form and photosynthesis. BioScience 47:785–793.

    Article  Google Scholar 

  • Smith, W. K., Bell, D. T., and Shepherd, K. A. 1998. Associations between leaf orientation, structure and sunlight exposure in five western Australian communities. Am. J. Bot. 84:1698–170.

    Google Scholar 

  • Smith, W. K., Kelly, R. D., Welker, J. M., Fahnestock, J. T., Reiners, W. A., and Hunt, E. R. 2003. Leaf-to-aircraft measurements of net CO2 exchange in a sagebrush steppe ecosystem. J. Geophys. Res. 108(D3), 4122, doi: 10.1029/2002JD002512, 2003.

    Article  Google Scholar 

  • Young, D. R., and Smith, W. K. 1982. Simulation studies of the influence of understory location on transpiration and photosynthesis in Arnica cordifolia Hook. Ecology 63:1761–1771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Smith, W.K., Vogelmann, T.C., Critchley, C. (2004). Background and Objectives. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics