Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrell, J., E.P. McDonald, and R.L. Lindroth. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–72.

    Article  Google Scholar 

  • Augner, M. 1995. Low nutritive quality as a plant defense: Effects of herbivore-mediated interactions. Evolutionary Ecology 9:605–16.

    Article  Google Scholar 

  • Awmack, C.S., C.M. Woodcock, and R. Harrington. 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology 22:366–68.

    Article  Google Scholar 

  • Bale, J.S., G.J. Masters, I.D. Hodkinson, C.S. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S.E. Hartley, T.H. Jones, R.L. Lindroth, M.C. Press, I. Syrmnioudis, A.D. Watt, and J.B. Whittaker. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology 8:1–16.

    Article  Google Scholar 

  • Barrett, P.M., and K.J. Willis. 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76:411–47.

    Article  PubMed  Google Scholar 

  • Bazzaz, F.A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21:167–96.

    Article  Google Scholar 

  • Bezemer, T.M., and T.H. Jones. 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: Quantitative analyses and guild effects. Oikos 82:212–22.

    Google Scholar 

  • Bloom, A.J., F.S. Chapin III, and H.A. Mooney 1985. Resource limitation in plants: An economic analogy. Annual Review of Ecology and Systematics 16:363–92.

    Google Scholar 

  • Bowes, G. 1993. Facing the inevitable: Plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology 44:309–32.

    Article  Google Scholar 

  • Brooks, G.L., and J.B. Whittaker. 1998. Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Global Change Biology 4:63–75.

    Article  Google Scholar 

  • Bryant, J.P., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–68.

    Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–58.

    Article  Google Scholar 

  • Coley, P.D., J.P. Bryant, and F.S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230:895–99.

    Google Scholar 

  • Coviella, C., and J.T. Trumble. 1999. Effects of elevated atmospheric CO2 on insectplant interactions. Conservation Biology 13:700–712.

    Article  Google Scholar 

  • Cowling, S.A. 2001. Plant carbon balance, evolutionary innovation and extinction in land plants. Global Change Biology 7:231–39.

    Article  Google Scholar 

  • Curtis, P.S., and X. Wang. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.

    Article  Google Scholar 

  • Dearing, M.D. 1997a. The effects of Acomastylis rossii tannins on a mammalian herbivore, the North American pika, Ochotona princeps. Oecologia 109:122–31.

    Article  Google Scholar 

  • Dearing, M.D. 1997b. The manipulation of plant secondary compounds by a foodhoarding herbivore, the North American pika, Ochotona princeps. Ecology 78:774–81.

    Google Scholar 

  • Dearing, M.D., and S. Cork. 1999. The role of detoxification of plant secondary compounds on diet breadth in mammalian herbivores. Journal of Chemical Ecology 25:1205–20.

    Article  Google Scholar 

  • Demment, M.W., and P.J. Van Soest. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist 125:641–72.

    Article  Google Scholar 

  • Denno, R.F., and M.S. McClure, eds. 1983. Variable plants and herbivores in natural and managed systems. New York: Academic Press.

    Google Scholar 

  • Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–99.

    Article  Google Scholar 

  • Ehleringer, J.R., and R.K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411–39.

    Article  Google Scholar 

  • Ehrlich, P.R., and P.H. Raven. 1964. Butterflies and plants: A study in coevolution. Evolution 18:586–608.

    Google Scholar 

  • Farrell, B.D., C. Mitter, and D.J. Futuyma. 1992. Diversification at the insect-plant interface. Bioscience 42:34–42.

    Google Scholar 

  • Grant, S. 1984. Beauty and the beast: The coevolution of plants and animals. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Gutherie, R.D. 1984. Mosaics, allelochemicals, and nutrients: An ecological theory of late-Pleistocene megafaunal extinctions. In Quarternary extinctions: A prehsitoric revolution, ed. P.S. Martin, R.G. Klein, 259–98. Tucson: University of Arizona Press.

    Google Scholar 

  • Hagerman, A.E., and C.T. Robbins. 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Canadian Journal of Zoology 71:628–33.

    Google Scholar 

  • Hamilton, J.G., A.R. Zangerl, E.H. DeLucia, and M.R. Berenbaum. 2001. The carbonnutrient balance hypothesis: Its rise and fall. Ecology Letters 4:86–95.

    Article  Google Scholar 

  • Henderson, S., P. Hattersley, S. von Caemmerer, and C.B. Osmond. 1994. Are C4 pathway plants threatened by global climatic change? In Ecophysiology of photosynthesis, ed. E.D. Schulze and M.M. Caldwell, 529–49. Heidelberg: Springer-Verlag..

    Google Scholar 

  • Herms, D.A., and W.J. Mattson. 1992. The dilemma of plants: To grow or defend. Quarterly Review of Biology 67:283–335.

    Article  Google Scholar 

  • Herrera, C.M., O. Pellmyr, eds. 2002. Plant-Animal Interactions: An evolutionary approach. Malden, Mass.: Blackwell Science.

    Google Scholar 

  • Holton, M.K., R.L. Lindroth, and E.V. Nordheim. 2003. Foliar quality influences treeherbivore-parasitoid interactions: effects of elevated CO2, O3, and genotype. Oecologia 137:233–244.

    Article  PubMed  Google Scholar 

  • Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15:56–61.

    Article  PubMed  Google Scholar 

  • Janis, C., M.J. Damuth, and J.M. Theodor. 2000. Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? Proceedings of the National Academy of Science 97:7899–7904.

    Article  Google Scholar 

  • Karban, R., and I.T. Baldwin. 1997. Induced responses to herbivory. Chicago: University of Chicago Press.

    Google Scholar 

  • Kopper, B.J. 2001. Consequences of elevated carbon dioxide and ozone for interactions between deciduous trees and lepidopteran folivores. Ph.D. thesis. Madison, Wisc.: University of Wisconsin.

    Google Scholar 

  • Kopper, B.J., A.J. Weldon, and R.L. Lindroth. [submitted] Direct effects of elevated CO2 and O3 on caterpillar performance. Ecological Entomology.

    Google Scholar 

  • Koricheva, J., S. Larsson, E. Haukioja, and M. Keinänen. 1998. Regulation of woody plant secondary metabolism by resource availability: Hypothesis testing by means of meta-analysis. Oikos 83:212–26.

    Google Scholar 

  • Le Thiec, D., M. Dixon, P. Loosveldt, and J.P. Garrec. 1995. Seasonal and annual variations of phosphorus, calcium, potassium, and manganese contents in different cross-sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO2. Trends in Ecology and Evolution 10:55–62.

    Article  Google Scholar 

  • Levin, D.A. 1973. The role of trichomes in plant defense. Quarterly Review of Biology 48:3–15.

    Article  Google Scholar 

  • Lincoln, D.E., E.D. Fajer, and R.H. Johnson. 1993. Plant-insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution 8:64–68.

    Article  Google Scholar 

  • Lindroth, R.L. 1989. Mammalian herbivore—plant interactions. In Plant-animal interactions, ed. W.G. Abrahamson, 163–206. New York: McGraw-Hill.

    Google Scholar 

  • —. 1991. Differential toxicity of allelochemicals to insects: Roles of enzymatic detoxication systems. In Insect-plant interactions, vol. 3, ed. E.A. Bernays, 1–33. Boca Raton, Fla.: CRC Press.

    Google Scholar 

  • —. 1996a. Consequences of elevated atmospheric CO2 for forest insects. In Carbon dioxide, populations, and communities, ed. C. Körner and F.A. Bazzaz, 347–61. San Diego: Academic Press.

    Google Scholar 

  • —. 1996b. CO2-mediated changes in tree chemistry and tree-Lepidoptera interactions. In Carbon dioxide and terrestrial ecosystems, ed. G.W. Koch and H.A. Mooney, 105–20. San Diego: Academic Press.

    Google Scholar 

  • Lindroth, R.L., K.K. Kinney, and C.L. Platz. 1993. Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance. Ecology 74:763–77.

    Google Scholar 

  • Lindroth, R.L., S. Roth, E.L. Kruger, J.C. Volin, and P.A. Koss. 1997. CO2-mediated changes in aspen chemistry: Effects on gypsy moth performance and susceptibility to virus. Global Change Biology 3:279–89.

    Article  Google Scholar 

  • Lindroth, R.L., S. Roth, and E.V. Nordheim. 2001. Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126:371–79.

    Article  Google Scholar 

  • MacFadden, B.J. 2000. Origin and evolution of the grazing guild in Cenozoic New World terrestrial mammals. In Evolution of herbivory in terrestrial vertebrates: Perspectives from the fossil record, ed. H.-D. Sues, 223–44. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119–61.

    Article  Google Scholar 

  • McGuire, A.D., J.M. Melillo, and L.A. Joyce. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annual Review of Ecology and Systematics 26:473–503.

    Article  Google Scholar 

  • McNaughton, S.J., J.L. Tarrants, M.M. McNaughton, and R.H. Davis. 1985. Silica as a defense against herbivory and a growth promoter in African grasses. Ecology 66:528–35.

    Google Scholar 

  • Morgan, J.A., D.R. Lecain, A.R. Mosier, and D.G. Milchunas. 2001. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biology 7:451–56.

    Article  Google Scholar 

  • Oren, R., D.S. Ellsworth, K.H. Johnsen, N. Phillips, B.E. Ewers, C. Maier, K.V.R. Schäfer, H. McCarthy, G. Hendrey, S.G. McNulty, and G.G. Katul. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.

    PubMed  Google Scholar 

  • Owensby, C.E., J.M. Ham, A.K. Knapp, and L.M. Auen. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5:497–506.

    Article  Google Scholar 

  • Pagani, M., K.H. Freeman, and M.A. Arthur. 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–79.

    Article  PubMed  Google Scholar 

  • Peñuelas, J., M. Estiarte, B.A. Kimball, S.B. Idso, P.J. Pinter, G.W. Wall, R.L. Garcia, D.J. Hansaker, R.L. LaMorte, and D.L. Hendrix. 1996. Variety of responses of plant phenolic concentration to CO2 enrichment. Journal of Experimental Botany 47:1463–67.

    Google Scholar 

  • Peters, H.A., B. Baur, F. Bazzaz, and C. Körner. 2000. Consumption rates and food preferences of slugs in a calcareous grassland under current and future CO2 conditions. Oecologia 125:72–81.

    Google Scholar 

  • Poorter, H., Y. Van Berkel, R. Baxter, J. Den Hertog, P. Dijkstra, R.M. Gifford, K.L. Griffin, C. Roumet, J. Roy, and S.C. Wong. 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment 20:472–82.

    Google Scholar 

  • Robbins, C.T. 1993. Wildlife feeding and nutrition, 2d ed. New York: Academic Press.

    Google Scholar 

  • Roth, S., E.P. McDonald, and R.L. Lindroth. 1997. Atmospheric CO2 and soil water availability: Consequences for tree-insect interactions. Canadian Journal of Forest Research 27:1281–90.

    Article  Google Scholar 

  • Roth, S.K., and R.L. Lindroth. 1995. Elevated atmospheric CO2: Effects on phytochemistry, insect performance and insect-parasitoid interactions. Global Change Biology 1:173–82.

    Google Scholar 

  • Runion, G.B., J.A. Entry, S.A. Prior, R.J. Mitchell, H.H. Rogers. 1999. Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO2 and water stress. Tree Physiology 19:329–35.

    PubMed  Google Scholar 

  • Schall, J.J. 1990. Aversion of whiptail lizards cnemidophorus to a model alkaloid. Herpetologica 46:34–38.

    Google Scholar 

  • Scheline, R.R. 1978. Mammalian metabolism of plant Xenobiotics. New York: Academic Press.

    Google Scholar 

  • Schultz, J.C. 1988. Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology 69:896–97.

    Google Scholar 

  • Simmonds, M.S.J. 1998. Chemoecology: The legacy left by Tony Swain. Phytochemistry 49:1183–90.

    Article  Google Scholar 

  • Spencer, K.C., ed. 1988. Chemical mediation of coevolution. New York: Academic Press.

    Google Scholar 

  • Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–45.

    Article  Google Scholar 

  • Stiling, P., A.M. Rossi, B. Hungate, P. Dijkstra, C.R. Hinkle, W.M. Knott, and B. Drake. 1999. Decreased leaf-miner abundance in elevated CO2: Reduced leaf quality and increased parasitoid attack. Ecological Applications 9:240–44.

    PubMed  Google Scholar 

  • Strauss, S.Y., J.A. Rudgers, J.A. Lau, R.E. Irwin. 2002. Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution 17:278–85.

    Article  Google Scholar 

  • Strong, D.R., J.H. Lawton, and R. Southwood. 1984. Insects on plants. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Sues, H.-D., ed. 2000. Evolution of herbivory in terrestrial vertebrates: Perspectives from the fossil record. Cambridge: Cambridge University Press.

    Google Scholar 

  • Swain, T. 1978. Plant-animal coevolution: A synoptic view of the Paleozoic and Mesozoic. Annual Proceedings of the Phytochemical Society of Europe 15:3–19.

    Google Scholar 

  • Thompson, J.N. 1999. The evolution of species interactions. Science 284:2116–18.

    Article  PubMed  Google Scholar 

  • van Soest, P.J. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University Press.

    Google Scholar 

  • Wand, S.J.E., G.F. Midgley, M.H. Jones, and P.S. Curtis. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A metaanalytic test of current theories and perceptions. Global Change Biology 5:723–41.

    Article  Google Scholar 

  • Watt, A.D., J.B. Whittaker, M. Docherty, G. Brooks, E. Lindsay, and D.T. Salt. 1995. The impact of elevated atmospheric CO2 on insect herbivores. In Insects in a changing environment, ed. R. Harrington and N.E. Stork, 197–217. New York: Academic Press.

    Google Scholar 

  • Weis, A.E., and M.R. Berenbaum. 1989. Herbivorous insects and green plants. In Plantanimal interactions, ed. W.G. Abrahamson, 123–62. New York: McGraw-Hill.

    Google Scholar 

  • Weishampel, D.B., and C.-M. Jianu. 2000. Plant-eaters and ghost lineages: Dinosauran herbivory revisited. In Evolution of herbivory in terrestrial vertebrates: Perspectives from the fossil record, ed. H.-D. Sues, 123–43. Cambridge: Cambridge University Press.

    Google Scholar 

  • Whittaker, J.B. 1999. Impacts and responses at population level of herbivorous insects to elevated CO2. European Journal of Entomology 96:149–56.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lindroth, R.L., Denise Dearing, M. (2005). Herbivory in a World of Elevated CO2. In: Baldwin, I., et al. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Ecological Studies, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-27048-5_21

Download citation

Publish with us

Policies and ethics