Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor, J. 2000. Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small. Tree Physiology 20:139–44.

    PubMed  Google Scholar 

  • Amthor, J., G. Koch, J. Willms, and D. Layzell. 2001. Leaf O2 uptake in the dark is independent of coincident CO2 partial pressure. Journal of Experimental Botany 52:2235–38.

    PubMed  Google Scholar 

  • Barton, C.V.M., and P.G. Jarvis. 1999. Growth response of branches of Picea sitchensis to four years exposure to elevated atmospheric carbon dioxide concentration. New Phytologist 144:233–43.

    Article  Google Scholar 

  • Bazzaz, F. 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21:167–96.

    Article  Google Scholar 

  • Beerling, D. 1997. The net primary productivity and water use of forests in the geological past. Advances in Botanical Research 26:193–227.

    Google Scholar 

  • Beerling, D., and F. Woodward. 1997. Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record. Botanical Journal of the Linnean Society 124:137–53.

    Article  Google Scholar 

  • Berntson, G.M., and F.A. Bazzaz. 1996. Belowground positive and negative feedbacks on CO2 growth enhancement. Plant and Soil 187:119–31.

    Article  Google Scholar 

  • Bunce, J. 1995. Effects of elevated carbon dioxide concentrations in the dark on the growth of soybean seedlings. Annals of Botany 75:365–68.

    Article  Google Scholar 

  • —. 2001. Are annual plants adapted to the current atmospheric concentration of carbon dioxide? International Journal of Plant Science 162:1261–66.

    Article  Google Scholar 

  • Burton, A., and K.S. Pregitzer. 2002. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field. Tree Physiology 22:67–72.

    PubMed  Google Scholar 

  • Ceulemans, R., and M. Mousseau. 1994. Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127:425–46.

    Google Scholar 

  • Cheng, W.X., D.A. Sims, Y.Q. Luo, D.W. Johnson, J.T. Ball, and J.S. Coleman. 2000. Carbon budgeting in plant-soil mesocosms under elevated CO2: Locally missing carbon? Global Change Biology 6:99–109.

    Article  Google Scholar 

  • Collatz, G., M. Ribas-Carbo, and J.A. Berry. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C3 plants. Australian Journal of Plant Physiology 19:519–38.

    Google Scholar 

  • Comins, H.N., and R.E. McMurtrie. 1993. Long-term response of nutrient-limited forests to CO2 enrichment; equilibrium behavior of plant-soil models. Ecological Applications 3:666–81.

    Google Scholar 

  • Cotrufo, M., P. Ineson, and A. Scott. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4:43–54.

    Article  Google Scholar 

  • Cowan, I.R., and G.D. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. In Integration of activity in the higher plant, ed. D.H. Jennings, 471–505. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cramer, W., A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V.A. Fisher, J.A. Foley, A.D. Friend, C.J. Kucharik, M.R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology 7:357–73.

    Article  Google Scholar 

  • Curtis, P.S., and X.Z. Wang. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.

    Article  Google Scholar 

  • Dewar, R.C., B.E. Medlyn, and R.E. McMurtrie. 1998. A mechanistic analysis of light and carbon use efficiencies. Plant Cell and Environment 21:573–88.

    Article  Google Scholar 

  • Diaz, S., J. Grime, J. Harris, and E. McPherson. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–17.

    Article  Google Scholar 

  • Drake, B., J. Azcon-Bieto, J. Berry, J. Bunce, P. Dijkstra, J. Farrar, R. Gifford, M. Gonzalez-Meler, G. Koch, H. Lambers, J. Siedow, and S. Wullschleger. 1999. Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell and Environment 22:649–57.

    Article  Google Scholar 

  • Drake, B., M. Gonzalez-Meler, and S. Long. 1997. More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48:609–39.

    Article  PubMed  Google Scholar 

  • Eamus, D., and P.G. Jarvis. 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research 19:1–55.

    Google Scholar 

  • Ehleringer, J., T. Cerling, and B. Helliker. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–99.

    Article  Google Scholar 

  • Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19.

    Article  Google Scholar 

  • Farquhar, G.D., S. Von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic carbon dioxide assimilation in leaves of 3-carbon pathway species. Planta 149:78–90.

    Article  Google Scholar 

  • Field, C., and H. Mooney. 1986. The photosynthesis-nitrogen relationship in wild plants. In On the economy of plant form and function, ed. T. Givnish, 25–55. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghannoum, O., S. Von Caemmerer, L. Ziska, and J. Conroy. 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell and Environment 23:931–42.

    Article  Google Scholar 

  • Gielen, B., C. Calfapietra, M. Sabatti, and R. Ceulemans. 2001. Leaf area dynamics in a closed poplar plantation under free-air carbon dioxide enrichment. Tree Physiology 21:1245–55.

    PubMed  Google Scholar 

  • Gifford, R.M. 1992. Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: Implications for the global carbon cycle. Advances in Bioclimatology 1:24–58.

    Google Scholar 

  • —. 1994. The global carbon cycle: A viewpoint on the missing sink. Australian Journal of Plant Physiology 21:1–15.

    Google Scholar 

  • Gonzalez-Meler, M., M. Ribas-Carbo, J. Siedow, and B. Drake. 1996. Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiology 112: 1349–55.

    PubMed  Google Scholar 

  • Gonzalez-Meler, M., and J. Siedow. 1999. Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: Does it matter at the tissue or whole-plant level? Tree Physiology 19:253–59.

    PubMed  Google Scholar 

  • Grant, R.F., and I.A. Nalder. 2000. Climate change effects on net carbon exchange of a boreal aspen-hazelnut forest: Estimates from the ecosystem model ecosys. Global Change Biology 6:183–200.

    Article  Google Scholar 

  • Griffin, K., D. Sims, and J. Seemann. 1999. Altered night-time CO2 concentration affects the growth, physiology and biochemistry of soybean. Plant Cell and Environment 22: 91–99.

    Article  Google Scholar 

  • Gurevitch, J., P. Curtis, and M. Jones. 2001. Meta-analysis in ecology. Advances in Ecological Research 32:199–247.

    Article  Google Scholar 

  • Hall, D.O., and K.K. Rao. 1999. Photosynthesis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hamilton, J., R. Thomas, and E. DeLucia. 2001. Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell and Environment 24:975–82.

    Article  Google Scholar 

  • Hättenschwiler, S., F. Miglietta, A. Raschi, and C. Körner. 1997. Thirty years of in situ tree growth under elevated CO2: A model for future forest responses? Global Change Biology 3:463–71.

    Article  Google Scholar 

  • Hedges, J., and K. Weliky. 1989. Diagenesis of conifer needles in a coastal marine environment. Geochimica et Geophysica Acta 53:2659–2673.

    Google Scholar 

  • Houghton, J.T., L.G. Meira Filho, J. Bruce, H. Lee, B.A. Callander, E. Haites, N. Harris, and K. Maskell. 1995. Climate change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hovenden, M., and L. Schimanski. 2000. Genotypic differences in growth and stomatal morphology of Southern Beech, Nothofagus cunninghamii, exposed to depleted CO2 concentrations. Australian Journal of Plant Physiology 27:281–87.

    Google Scholar 

  • Huang, Y., F. Street-Perrott, S. Metcalfe, M. Brenner, M. Moreland, and K. Freeman. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:1647–51.

    Article  PubMed  Google Scholar 

  • Hussain, M., M. Kubiske, and K. Conner. 2001. Germination of CO2-enriched Pinus taeda L. seeds and subsequent seedling growth responses to CO2 enrichment. Functional Ecology 15:344–50.

    Article  Google Scholar 

  • Jach, M.E., I. Laureysens, and R. Ceulemans. 2000. Above-and below-ground production of young Scots pine (Pinus sylvestris L.) trees after three years of growth in the field under elevated CO2. Annals of Botany 85:789–98.

    Article  Google Scholar 

  • Jacoby, G., and R. D’Arrigo. 1997. Tree rings, carbon dioxide, and climatic change. Proceedings of the National Academy of Sciences of the United States of America 94:8350–53.

    PubMed  Google Scholar 

  • Jenkinson, D., K. Goulding, and D. Powlson. 1999. Nitrogen deposition and carbon sequestration. Nature 400:629.

    Article  Google Scholar 

  • Kellomäki, S., and H. Väisänen. 1997. Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecological Modelling 97:121–40.

    Article  Google Scholar 

  • Kimball, B. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75:779–88.

    Google Scholar 

  • Kirschbaum, M.U.F. 1999. Modelling forest growth and carbon storage in response to increasing CO2 and temperature. Tellus 51B:871–88.

    Google Scholar 

  • Kirschbaum, M.U.F., P. Bullock, J.R. Evans, K. Goulding, P.G. Jarvis, I.R. Noble, M. Rounsevell, and T.D. Sharkey. 1996. Ecophysiological, ecological and soil processes in terrestrial ecosystems: A primer on general concepts and relationships. In Climate change 1995 impacts, adaptations, and mitigation of climate change: Scientifictechnical analyses, IPCC Second Assessment Report, ed. R.T. Watson, M.C. Zzinyowera, and R.H. Moss, 57–74. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Kirschbaum, M.U.F., D.A. King, H.N. Comins, R.E. McMurtrie, B.E. Medlyn, S. Pongracic, D. Murty, H. Keith, R.J. Raison, P.K. Khanna, and D.W. Sheriff. 1994. Modeling forest response to increasing CO2 concentration under nutrient-limited conditions. Plant Cell and Environment 17:1081–99.

    Google Scholar 

  • Knapp, P.A., P.T. Soule, and H.D. Grissino-Mayer. 2001. Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Global Change Biology 7:903–17.

    Article  Google Scholar 

  • Koch, K. 1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:509–40.

    Article  PubMed  Google Scholar 

  • Körner, C. 1996. The response of complex multispecies systems to elevated CO2. In Global change and terrestrial ecosystems, ed. B. Walker, and W. Steffen, 20–42. Cambridge: Cambridge University Press.

    Google Scholar 

  • LaDeau, S., and J. Clark. 2001. Rising CO2 levels and the fecundity of forest trees. Science 292:95–98.

    Article  PubMed  Google Scholar 

  • Lebourgeois, F., M. Becker, R. Chevalier, J.I. Dupouey, and J.M. Gilbert. 2000. Height and radial growth trends of Corsican pine in western France. Canadian Journal of Forest Research 30:712–24.

    Article  Google Scholar 

  • Luo, Y., J.-L. Chen, J. Reynolds, C. Field, and H. Mooney. 1997. Disproportional increases in photosynthesis and plant biomass in a Californian grassland exposed to elevated CO2: A simulation analysis. Functional Ecology 11:696–704.

    Article  Google Scholar 

  • Luo, Y.Q., and J.F. Reynolds. 1999. Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–83.

    Google Scholar 

  • McMurtrie, R.E., and H.N. Comins. 1996. The temporal response of forest ecosystems to doubled atmospheric CO2 concentration. Global Change Biology 2:49–57.

    Google Scholar 

  • McMurtrie, R.E., R.C. Dewar, B.E. Medlyn, and M.P. Jeffreys. 2000. Effects of elevated [CO2] on forest growth and carbon storage: A modelling analysis of the consequences of changes in litter quality/quantity and root exudation. Plant and Soil 224:135–52.

    Article  Google Scholar 

  • McMurtrie, R.E., B.E. Medlyn, and R.C. Dewar. 2001. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. Tree Physiology 21:831–39.

    PubMed  Google Scholar 

  • Medlyn, B.E. 1996. The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2. Australian Journal of Plant Physiology 23:593–603.

    Google Scholar 

  • Medlyn, B.E., F.W. Badeck, D.G.G. De Pury, C.V.M. Barton, M. Broadmeadow, R. Ceulemans, P. De Angelis, M. Forstreuter, M.E. Jach, S. Kellomäki, E. Laitat, M. Marek, S. Philippot, A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P. Roberntz, K. Wang, and P.G. Jarvis. 1999. Effects of elevated [CO2] on photosynthesis in European forest species: A meta-analysis of model parameters. Plant Cell and Environment 22:1475–95.

    Article  Google Scholar 

  • Medlyn, B.E., C.V.M. Barton, M.S.J. Broadmeadow, R. Ceulemans, P. De Angelis, M. Forstreuter, M. Freeman, S.B. Jackson, S. Kellomäki, E. Laitat, A. Rey, P. Roberntz, B.D. Sigurdsson, J. Strassemeyer, K. Wang, P.S. Curtis, and P.G. Jarvis. 2001a. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytologist 149:247–64.

    Article  Google Scholar 

  • Medlyn, B.E., and R.C. Dewar. 1996. A model of the long-term response of carbon allocation and productivity of forests to increased CO2 concentration and nitrogen deposition. Global Change Biology 2:367–76.

    Google Scholar 

  • Medlyn, B.E., and P.G. Jarvis. 1999. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124:69–83.

    Article  Google Scholar 

  • Medlyn, B.E., A. Rey, C.V.M. Barton, and M. Forstreuter. 2001b. Above-ground growth responses of forest trees to elevated CO2. In The impact of carbon dioxide and other greenhouse gases on forest ecosystems, ed. D. Karnosky, G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes, 127–46. Wallingford, U.K.: CABI Publishing.

    Google Scholar 

  • Melillo, J., T. Callaghan, F. Woodward, E. Salati, and S. Sinha. 1991. Effects on ecosystems. In Climate change: The IPCC scientific assessment, ed. J. Houghton, G. Jenkins, and J. Ephraums, 282–310. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morison, J.I.L. 1987. Intercellular CO2 concentration and stomatal response to CO2. In Stomatal function, ed. E. Zeiger, I.R. Cowan, and G.D. Farquhar, 229–51. Stanford: Stanford University Press.

    Google Scholar 

  • —. 1993. Responses of plants to CO2 under water limited conditions. Vegetatio 104/105:193–209.

    Article  Google Scholar 

  • —. 1998. Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49:443–52.

    Article  Google Scholar 

  • Mott, K.A. 1988. Do stomata respond to carbon dioxide concentrations other than intercellular? Plant Physiology 86:200–203.

    Google Scholar 

  • Nadelhoffer, K.J., B. Emmett, P. Gundersen, O. Kjonaas, C. Koopmans, P. Schleppi, A. Tietema, and R. Wright. 1999a. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–48.

    Article  Google Scholar 

  • Nadelhoffer, K.J., B. Emmett, P. Gundersen, C. Koopmans, P. Schleppi, A. Tietema, and R. Wright. 1999b. Nitrogen deposition and carbon sequestration—Reply. Nature 400:630.

    Article  Google Scholar 

  • Newton, P.C.D., H. Clark, G. Edwards, and D.J. Ross. 2001. Experimental confirmation of ecosystem model predictions comparing transient and equilibrium plant responses to elevated atmospheric CO2. Ecology Letters 4:344–47.

    Article  Google Scholar 

  • Norby, R. 1996. Forest canopy productivity index. Nature 381:564.

    Article  Google Scholar 

  • Norby, R., J. Pastor, and J. Melillo. 1986. Carbon-nitrogen interactions in CO2-enriched white oak: Physiological and long-term perspectives. Tree Physiology 2:233–41.

    PubMed  Google Scholar 

  • Norby, R., D. Todd, J. Fults, and D. Johnson. 2001a. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150:477–87.

    Article  Google Scholar 

  • Norby, R., S. Wullschleger, C. Gunderson, D. Johnson, and R. Ceulemans. 1999. Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant Cell and Environment 22:683–714.

    Article  Google Scholar 

  • Norby, R.J., M.F. Cotrufo, P. Ineson, E.G. O’Neill, and J. Canadell. 2001b. Elevated CO2, litter chemistry, and decomposition: A synthesis. Oecologia 127:153–65.

    Article  Google Scholar 

  • Ollinger, S.V., J.D. Aber, P.B. Reich, and R.J. Freuder. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology 8:545–62.

    Article  Google Scholar 

  • Oren, R., D. Ellsworth, K. Johnsen, N. Phillips, B. Ewers, C. Maier, K. Schafer, H. McCarthy, G. Hendrey, S. McNulty, and G. Katul. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.

    PubMed  Google Scholar 

  • Owensby, C., P. Coyne, J. Ham, L. Auen, and A. Knapp. 1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2. Ecological Applications 3:644–53.

    Google Scholar 

  • Owensby, C., J. Ham, A. Knapp, and L. Auen. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5:497–506.

    Article  Google Scholar 

  • Parton, W.J., J. Scurlock, D.S. Ojima, D.S. Schimel, and D.O. Hall. 1995. Impact of climate-change on grassland production and soil carbon worldwide. Global Change Biology 1:13–22.

    Google Scholar 

  • Pearce, F. 1999. That sinking feeling. New Scientist 164:20–21.

    Google Scholar 

  • Peñuelas, J., and J. Azcon-Bieto. 1992. Changes in leaf δ13C of herbarium plant species during the last 3 centuries of CO2 increase. Plant Cell and Environment 15:485–89.

    Google Scholar 

  • Peñuelas, J., and M. Estiarte. 1997. Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia 109:69–73.

    Article  Google Scholar 

  • Peñuelas, J., and R. Matamala. 1990. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany 41:1119–24.

    Google Scholar 

  • Pepper, D.A., S.J. Del Grosso, R.E. McMurtrie, and W.J. Parton. [submitted] Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochemical Cycles.

    Google Scholar 

  • Poorter, H., and O. Nagel. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A. quantitative review. Australian Journal of Plant Physiology 27:595–607.

    Google Scholar 

  • Rastetter, E.B., G. Ã…gren, and G. Shaver. 1997. Responses of N-limited ecosystems to increased CO2: A balanced-nutrition, coupled-element-cycles model. Ecological Applications 7:444–60.

    Google Scholar 

  • Reuveni, J., J. Gale, and M. Zeroni. 1997. Differentiating day from night effects of high ambient [CO2] on the gas exchange and growth of Xanthium strumarium L. exposed to salinity stress. Annals of Botany 79:191–96.

    Article  Google Scholar 

  • Reynolds, H. 1996. Effects of elevated CO2 on plants grown in competition. In Carbon dioxide, populations, and communities, ed. C. Körner and F. Bazzaz, 273–86. San Diego: Academic Press.

    Google Scholar 

  • Reynolds, J., P. Kemp, B. Acock, J.-L. Chen, and D. Moorhead. 1996. Progress, limitations, and challenges in modeling the effects of elevated CO2 on plants and ecosystems. In Carbon dioxide and terrestrial ecosystems, ed. G. Koch and H. Mooney, 347–80. San Diego: Academic Press.

    Google Scholar 

  • Royer, D. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114:1–28.

    PubMed  Google Scholar 

  • Royer, D., R. Berner, and D. Beerling. 2001. Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches. Earth Science Reviews 54:349–92.

    Article  Google Scholar 

  • Rundgren, M., N. Loader, and D. Beerling. 2000. Variations in the carbon isotope composition of late-Holocene plant macrofossils: A comparison of whole-leaf and cellulose trends. Holocene 10:149–54.

    Article  Google Scholar 

  • Ryan, M.G., E.R. Hunt, R. McMurtrie, G. Ã…gren, J. Aber, A.D. Friend, E.B. Rastetter, W. Pulliam, R.J. Raison, and S. Linder. 1996a. Comparing models of ecosystem function for temperate conifer forests. I. Model description and validation. In Global change: Effects on coniferous forests and grasslands, ed. A. Breymeyer, D.O. Hall, J. Melillo, and G. Ã…gren, 313–62. Chichester, U.K.: John Wiley.

    Google Scholar 

  • Ryan, M.G., R. McMurtrie, G. Ã…gren, E.R. Hunt, J. Aber, A.D. Friend, E.B. Rastetter, and W. Pulliam. 1996b. Comparing models of ecosystem function for temperate conifer forests. II. Simulations of the effect of climate change. In Global change: Effects on coniferous forests and grasslands, ed. A. Breymeyer, D.O. Hall, J. Melillo, and G. Ã…gren, 363–87. Chichester, U.K.: John Wiley.

    Google Scholar 

  • Sage, R.F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology 3:202–13.

    Article  Google Scholar 

  • Sage, R.F., and S. Cowling. 1999. Implications of stress in low CO2 atmospheres of the past: are today’s plants too conservative for a high CO2 world? In Carbon dioxide and environmental stress, ed. Y. Luo, and H.A. Mooney, 289–308. San Diego: Academic Press.

    Google Scholar 

  • Saxe, H., D. Ellsworth, and J. Heath. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139:395–436.

    Article  Google Scholar 

  • Sharkey, T. 1985. Photosynthesis in intact leaves of C3 plants: Physics, physiology, and rate limitations. Botanical Review 51:53–105.

    Google Scholar 

  • Stitt, M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell and Environment 14:741–62.

    Google Scholar 

  • Thomas, S.C., and M. Jasienski. 1996. Genetic variability and the nature of microevolutionary responses to elevated CO2. In Carbon dioxide, populations, and communities, ed. C. Körner, and F.A. Bazzaz, 3–12. San Diego: Academic Press.

    Google Scholar 

  • Thornley, J.M.H., and M.G.R. Cannell. 1996. Temperate forest responses to carbon dioxide, temperature and nitrogen: A model analysis. Plant Cell and Environment 19:1331–48.

    Google Scholar 

  • —. 1997. Temperate grassland responses to climate change: An analysis using the Hurley pasture model. Annals of Botany 80:205–21.

    Article  Google Scholar 

  • Tissue, D., R. Thomas, and B. Strain. 1997. Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: A 4 year experiment in the field. Plant Cell and Environment 20:1123–34.

    Article  Google Scholar 

  • Tjoelker, M., J. Oleksyn, T. Lee, and P. Reich. 1999. Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytologist 150:419–24.

    Article  Google Scholar 

  • von Caemmerer, S., J.R. Evans, G.S. Hudson, and T.J. Andrews. 1994. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97.

    Article  Google Scholar 

  • Walker, B.H., W.L. Steffen, and J. Langridge. 1999. Interactive and integrated effects of global change on terrestrial ecosystems. In The terrestrial biosphere and global change. Implications for natural and managed ecosystems, ed. B.H. Walker, W.L. Steffen, J. Canadell, and J.S.I. Ingram, 329–75. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wand, S., G. Midgeley, M. Jones, and P.S. Curtis. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Global Change Biology 5:723–41.

    Article  Google Scholar 

  • Wang, Y.-P., A. Rey, and P.G. Jarvis. 1998. Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biology 4:797–807.

    Article  Google Scholar 

  • Ward, J., J. Antonovics, R.B. Thomas, and B.R. Strain. 2000. Is atmospheric CO2 a selective agent on model C3 annuals? Oecologia 123:330–41.

    Article  Google Scholar 

  • Wong, S.C., I.R. Cowan, and G.D. Farquhar. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–26.

    Article  PubMed  Google Scholar 

  • Woodward, F., and C. Kelly. 1995. The influence of CO2 concentration on stomatal density. New Phytologist 131:311–27.

    Google Scholar 

  • Wullschleger, S.D., T.J. Tschaplinski, and R.J. Norby. 2002. Plant water relations at elevated CO2: Implications for water-limited environments. Plant Cell and Environment 25:319–31.

    Article  Google Scholar 

  • Zak, D., K. Pregitzer, J. King, and W. Holmes. 2000. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist 147:201–22.

    Article  Google Scholar 

  • Zak, D.R., K.S. Pregitzer, P.S. Curtis, J.A. Teeri, R. Fogel, and D. Randlett. 1993. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151:105–17.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Medlyn, B.E., McMurtrie, R.E. (2005). Effects of CO2 on Plants at Different Timescales. In: Baldwin, I., et al. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Ecological Studies, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-27048-5_20

Download citation

Publish with us

Policies and ethics