Advertisement

Chemosensory Inputs and Neural Remodeling in Carotid Body and Brainstem Catecholaminergic Cells

  • Christophe Soulage
  • Olivier Pascual
  • Jean-Christophe Roux
  • Monique Denavit-Saubié
  • Jean-Marc Pequignot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

Exposure to hypoxia elicits an immediate increase in ventilation in order to face the tissue oxygen deficit. The acute response to hypoxia develops gradually over several days despite a constant level of isocapnic hypoxia, before reaching a steady state level which has been termed ventilatory acclimatization to hypoxia (VAH). The functional acclimatization to hypoxia reveals a striking plasticity of the chemoreflex, which takes place within the first days of exposure and can be prolonged for weeks, months or years. There is clearcut evidence that the peripheral arterial chemoreceptors play a major role in initiating the ventilatory acclimatization to hypoxia. However, this does not preclude a role for central structures involved in the translation of chemosensory inputs and modulating the integration of carotid chemo-afferent inputs. Early and recent studies have shown that the ventilatory plasticity induced by sustained hypoxia is associated with changes in the morphology and phenotype of the carotid chemoreceptors, increases in neurotransmitter biosynthesis and release, modulation of neuroreceptor expression in the carotid body and increased firing rate of the carotid chemo-afferent neurons. More recent studies demonstrated that the neuroplasticity also takes place during long-term hypoxia in restricted areas of the central nervous system, which have been involved in respiratory and sympathetic responses to hypoxia. This short review is devoted to the neurochemical plasticity induced by sustained hypoxia in the carotid body and in brainstem structures involved in translation of the peripheral chemosensory inputs, and their possible role in triggering or modulating ventilatory acclimatization to hypoxia.

Keywords

Tyrosine Hydroxylase Carotid Body Chronic Hypoxia Ventrolateral Medulla Glomic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bee, D., Pallot, DJ., 1995, Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats. J. Appl. Physiol. 79:1504–1511.PubMedGoogle Scholar
  2. Busch, MA., Bisgard, GE., Forster, HV., 1985, Ventilatory acclimatization to hypoxia is not dependent on arterial hypoxemia. J. Appl. Physiol. 58:1874–1880.PubMedGoogle Scholar
  3. Champagnat, J., Denavit-Saubie, M., Henry, JL., Leviel, V., 1979, Catecholaminergic depressant effects on bulbar repiratory mechanisms. Brain Res. 160:57–68.CrossRefPubMedGoogle Scholar
  4. Dumas, S., Pequignot, JM., Ghilini, G., Mallet, J., Denavit-Saubie, M., 1996, Plasticity of tyrosine hydroxylase gene expression in the rats nucleus tractus solitarius after ventilatory acclimatization to hypoxia. Mol. Brain Res. 40:188–194.CrossRefPubMedGoogle Scholar
  5. Ellenberger, HH., Feldman, JL., Zhan, WZ., 1990, Subnuclear organization of the lateral tegmental field of the rat. II: Catecholamine neurons and ventral respiratory group. J. Comp. Neurol. 294:212–222.CrossRefPubMedGoogle Scholar
  6. Gonzalez, C., Almaraz, L., Obeso, A., Rigual, R., 1994, Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74:829–898.PubMedGoogle Scholar
  7. Joseph, V., Soliz, J., Pequignot, J., Sempore, B., Cottet-Emard, JM., Dalmaz, Y., Favier, R., Spielvogel, H., Pequignot, JM., 2000, Gender differentiation of the chemoreflex during growth at high altitude: functional and neurochemical studies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R806–R816.PubMedGoogle Scholar
  8. Joseph, V., Soliz, J., Soria, R., Pequignot, J., Favier, R., Spielvogel, H., Pequignot, 2002, Dopaminergic metabolism in carotid bodies and high altitude acclimatization in female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R765–R773.PubMedGoogle Scholar
  9. Pequignot, JM., Hellström, S., Johansson, C., 1984, Intact and sympathectomized carotid bodies of long-term hypoxic rats: a morphometric ultrastructural study. J. Neurocytol. 13:481–493.CrossRefPubMedGoogle Scholar
  10. Pequignot, JM., Hellström, S., 1983, Intact and sympathectomized carotid bodies of long-term hypoxic rats. A morphometric light microscopical study. Virchows Arch. A. Pathol. Anat. Histopathol. 400:235–243.CrossRefPubMedGoogle Scholar
  11. Pascual, O., Denavit-Saubie, M., Dumas, S., Kietzmann, T., Ghilini, G., Mallet, J., Pequignot, JM., 2001, Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1a (HIF-1) under in vivo hypoxia in rat brainstem. Eur. J. Neurosci. 14:1981–1991.CrossRefPubMedGoogle Scholar
  12. Pilowsky, PM., Jiang, C., Lipsky, J., 1990, An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine-containing neurons. J. Comp. Neurol. 301:604–617.CrossRefPubMedGoogle Scholar
  13. Roux, JC., Pequignot, JM., Dumas, S., Pascual, O., Ghilini, G., Pequignot, J., Mallet, J., Denavit-Saubie, M., 2000, O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur. J. Neurosci. 12:3181–3190.CrossRefPubMedGoogle Scholar
  14. Schmitt, P., Soulier, V., Pequignot, JM., Pujol, JF., Denavit-Saubie, M., 1994, Ventilatory acclimatization to chronic hypoxia: relationship to noradrenaline metabolism in the rat solitary complex. J. Physiol. (Lond.) 477:331–337.Google Scholar
  15. Schnell, PO., Ignacak, ML., Bauer, AL., Striet, JB., Paulding, WR., Czyzyk-Krzeska, MF., 2003, Regulation of tyrosine hydroxylase promoter activity by von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J. Neurochem. 85:483–491.CrossRefPubMedGoogle Scholar
  16. Smith, CA., Bisgard, GE., Nielsen, AM., Daristotle, L., Kressin, NA., Forster, HV., Dempsey, JA., 1986, Carotid bodies are required for ventilatory acclimatization to chronic hypoxia. J. Appl. Physiol. 60:1003–1010.PubMedGoogle Scholar
  17. Soulier, V., Cottet-Emard, JM., Pequignot, J., Hanchin, F., Peyrin, L., Pequignot, JM., 1992, Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups. J. Appl. Physiol. 73(5):1810–4.PubMedGoogle Scholar
  18. Soulier, V., Dalmaz, Y., Cottet-Emard, JM., Kitahama, K., Pequignot, JM., 1995, Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia. Brain Res. 674(2):188–95.CrossRefPubMedGoogle Scholar
  19. Sun, QJ., Pilowsky, P., Minson, J., Amolda, L., Chahners, J., Llewellyn-Smith, IJ., 1994, Close appositions between tyrosine hydroxylase immunoreactive boutons and respiratory neurons in the rat ventrolateral medulla. J. Comp. Neurol. 340:1–10.CrossRefPubMedGoogle Scholar
  20. Verna, A., Schamel, A., Pequignot, JM., 1993, Long term hypoxia increases the number of norepinephrine-containing glomus cells in the rat carotid body: a correlative immunohistochemical and biochemical study. J. Auton. Nerv. Syst. 44:171–177.sCrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Christophe Soulage
    • 1
  • Olivier Pascual
    • 1
    • 2
  • Jean-Christophe Roux
    • 3
  • Monique Denavit-Saubié
    • 2
  • Jean-Marc Pequignot
    • 1
  1. 1.Laboratoire de Physiologie Integrative, Cellulaire et Moléculaire, UMR CNRS 5123Université Claude Bernard Lyon IVilleurbanne cedex
  2. 2.UPR CNRS 2216 NGIInstitut de Neurobiologie Alfred FessardGif/YvetteFrance
  3. 3.Neonatal UnitKarolinska hospital, Q2:07StockholmSweden

Personalised recommendations