Skip to main content

Effects of Intermittent Hypoxic Training and Detraining on Ventilatory Chemosensitive Adaptations in Endurance Athletes

  • Conference paper
Post-Genomic Perspectives in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

It is well known that chronic exposure to hypoxia and sojourns at high altitude lead to an increase in the hypoxic and hypercapnic ventilatory responses (HVR and HCVR), as indexes of ventilatory chemosensitivities to hypoxia and hypercapnia1. Similarly, recent studies2,3 found that intermittent hypoxia at rest also induces an increase in HVR, whereas only a few studies have investigated the influence of intermittent hypoxic training, i.e., live low-train high, on ventilatory chemosensitivity; Levine et al.4 and Benoit et al.5 indicated that an enhanced HVR appeared after intermittent hypoxic training. We also have found that HVR tended to increase after intermittent hypoxic training in untrained subjects, but HCVR did not6. However, surprisingly, no study has attempted to investigate ventilatory chemosensitive adaptations to intermittent hypoxic training in endurance athletes who have blunted ventilatory chemosensitivity, despite the fact that intermittent hypoxic training is commonly used by endurance athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Schoene, R. C. Roach, P. H. Hackett, J. R. Sutton, A. Cymerman, and C. S. Houston. Operation Everest II: ventilatory adaptation during gradual decompression to extreme altitude. Med. Sci. Sports Exerc. 22: 804–810 (1990).

    CAS  PubMed  Google Scholar 

  2. N. Garcia, S. R. Hopkins, and F. L. Powell. Effects of intermittent hypoxia on the isocapnic hypoxic ventilatory response and erythropoiesis in humans. Respir. Physiol. 123: 39–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. K. Katayama, Y. Sato, Y. Morotome, N. Shima, K. Ishida, S. Mori, and M. Miyamura. Intermittent hypoxia increases ventilation and Sao2 during hypoxic exercise and hypoxic chemosensitivity. J. Appl. Physiol. 90: 1431–1440 (2001).

    CAS  PubMed  Google Scholar 

  4. B. D. Levine, D. B. Friedman, K. Engfred, B. Hanel, M. Kjaer, P. S. Clifford, and N. H. Secher. The effects of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med. Sci Sports Exerc. 24: 769–775 (1992).

    CAS  PubMed  Google Scholar 

  5. H. Benoit, M. Germain, J. C. Barthelemy, C. Denis, J. Castells, D. Dormois, J. R. Lacour, and A. Geyssant. Pre-acclimatization to high altitude using exercise with normobaric hypoxic gas mixture. Int. J. Sports Med. 13,Suppl.: S213–S216 (1992).

    Article  PubMed  Google Scholar 

  6. K. Katayama, Y. Sato, Y. Morotome, N. Shima, K. Ishida, S. Mori, and M. Miyamura. Ventilatory chemosen-sitive adaptations to intermittent hypoxic exposure with endurance training and detraining. J. Appl. Physiol. 86: 1805–1811 (1999).

    CAS  PubMed  Google Scholar 

  7. J. V. Weil, E. Byrne-Quinn, I. E. Sodal, W. O. Friesen, B. Underbill, G. F. Filley, and R. F. Grover. Hypoxic ventilatory drive in normal man. J. Clin. Invest. 49: 1061–1072 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. D. J. C. Read. A clinical method for assessing the ventilatory response to carbon dioxide. Aust. Ann Med. 16: 20–32 (1967).

    CAS  PubMed  Google Scholar 

  9. P. A. McClean, E. A. Phillipson, D. Martinez, and N. Zamel. Single breath of CO2 as a clinical test of the peripheral chemoreflex. J. Appl. Physiol. 64: 84–89 (1988).

    CAS  PubMed  Google Scholar 

  10. M. C. K. Khoo. A model-based evaluation of the single-breath CO2 ventilatory response test. J. Appl. Physiol. 68: 393–399 (1990).

    CAS  PubMed  Google Scholar 

  11. E. Byrne-Quinn, J. V. Weil, I. E. Sodal, G. F. Filley, and R. F. Grover. Ventilatory control in the athlete. J. Appl. Physiol. 30: 91–98 (1971).

    CAS  PubMed  Google Scholar 

  12. J. N. Pande, S. P. Gupta, and J. S. Guleria. Ventilatory response to inhaled CO2 at high altitude. Respiration 31: 473–483 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Katayama, K., Sato, K., Matsuo, H., Ishida, K., Mori, S., Miyamura, M. (2004). Effects of Intermittent Hypoxic Training and Detraining on Ventilatory Chemosensitive Adaptations in Endurance Athletes. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_45

Download citation

Publish with us

Policies and ethics