Skip to main content

Respiratory, Cerebrovascular and Pressor Responses to Acute Hypoxia: Dependency on Pet Co 2

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

Acute hypoxia leads to changes not only in ventilation but also in cardiovascular1 and cerebral blood flow (CBF) dynamics2. However, there seems to be no available data concerning the combined ventilatory, cardiovascular and cerebrovascular responses to acute hypoxia in humans. Further, although hypercapnia may enhance the acute hypoxic ventilatory response (AHVR)3, it has not been clearly shown how hypercapnia may regulate changes in the cardiovascular and cerebrovascular responses to acute hypoxia. The lack of investigations surrounding the regulation and integration of the ventilatory, cerebrovascular and cardiovascular response by CO2 to acute hypoxia is somewhat surprising when one considers the important clinical relevance of such responses in health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Brian, Carbon dioxide and the cerebral circulation, Anesthesiology 88, 1365–1386 (1998).

    Article  PubMed  Google Scholar 

  2. R.S. Fitzgerald and S. Lahiri, Reflex responses to chemoreceptor stimulation, in: Handbook of Physiology, edited by A.P. Fishman. (American Physiological Society, Bethesda, Maryland, 1986), pp. 313–362.

    Google Scholar 

  3. A. Hanada, M. Sander and J. Gonzalez-Alonso, Human skeletal muscle sympathetic nerve activity, heart rate and limb haemodynamics with reduced blood oxygenation and exercise, J. Physiol. 551, 635–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. K. Ide, M. Eliasziw, and M.J. Poulin, The relationship between middle cerebral artery blood velocity and end-tidal Pco2 in the hypocapnic-hypercapnic range in humans, J. Appl. Physiol. 95, 129–137 (2003).

    PubMed  Google Scholar 

  5. J.M. Marshall, Peripheral chemoreceptors and cardiovascular regulation, Physiol. Rev. 74, 543–594 (1994).

    CAS  PubMed  Google Scholar 

  6. J.R. Munis and L.J. Lozada, Giraffes, siphons, and starling resistors. Cerebral perfusion pressure revisited, J. Neurosurg. Anesthesiol. 12, 290–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. M.J. Poulin and P.A. Robbins, Indexes of flow and cross-sectional area of the middle cerebral artery using doppler ultrasound during hypoxia and hypercapnia in humans, Stroke 27, 2244–2250 (1996).

    CAS  PubMed  Google Scholar 

  8. M.J. Poulin and P.A. Robbins, Influence of cerebral blood flow on the ventilatory response to hypoxia in humans, Exp. Physiol. 83, 95–106 (1998).

    CAS  PubMed  Google Scholar 

  9. J.W. Severinghaus, Cerebral circulation at high altitude, in: High Altitude: An Exploration of Human Adaptation, edited by T.F. Hornbein and R.B. Schoene. (Marcel Dekker, New York, 2001), pp. 343–375.

    Google Scholar 

  10. J.W. Severinghaus, Simple, accurate equations for human blood O2 dissociation computations, J. Appl. Physiol. 46, 599–602 (1979).

    CAS  PubMed  Google Scholar 

  11. S. Shimojyo, P. Scheinberg, K. Kogure, and O.M. Reinmuth, The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption, Neurology 18, 127–133 (1968).

    CAS  PubMed  Google Scholar 

  12. A. Weyland, W. Buhre, S. Grund, H. Ludwig, S. Kazmaier, W. Weyland, and H. Sonntag, Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension. J. Neurosurg. Anesthesiol. 12, 210–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. A. Xie, J.B. Skatrud, D.C. Crabtree, D.S. Puleo, B.M. Goodman, and B.J. Morgan, Neurocirculatory consequences of intermittent asphyxia in humans, J. Appl. Physiol. 89, 1333–1339 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Ainslie, P.N., Poulin, M.J. (2004). Respiratory, Cerebrovascular and Pressor Responses to Acute Hypoxia: Dependency on Pet Co 2 . In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_37

Download citation

Publish with us

Policies and ethics