Mechanism of Propofol-Induced Central Respiratory Depression in Neonatal Rats

Anatomical Sites and Receptor Types of Action
  • Masanori Kashiwagi
  • Yasumasa Okada
  • Shun-ichi Kuwana
  • Shigeki Sakuraba
  • Ryoichi Ochiai
  • Junzo Takeda
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic, which has been increasingly used for both the induction and maintenance of general anesthesia1, 2 as well as in critical care medicine.3 When propofol is used, one of the most important adverse effects is respiratory depression,4, 5, 6, 7, 8 which is caused by suppression of the central respiratory neuronal network. It is unclear, however, whether the main site of propofol action is the brainstem or the spinal cord.4, 5, 6, 7, 8 In most previous studies, the response of respiratory neurons to propofol has been largely neglected. We address this lacuna here.


Spinal Dorsal Horn Action Potential Firing Respiratory Neuron Burst Rate Inspiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. Sebel, and J. D. Lowdon, Propofol: a new intravenous anesthetic, Anesthesiology 71, 260–277 (1989).CrossRefPubMedGoogle Scholar
  2. 2.
    J. Tang, L. Chen, P. F. White, M. F. Watcha, R. H. Wender, R. Naruse, R. Kariger, and A. Sloninsky, Recovery profile, costs, and patient satisfaction with propofol and sevoflurane for fast-track office-based anesthesia, Anesthesiology 91, 253–261 (1999).CrossRefPubMedGoogle Scholar
  3. 3.
    G. Angelini, J. T. Ketzler, and D. B. Coursin, Use of propofol and other nonbenzodiazepine sedatives in the intensive care unit, Crit. Care Clin. 17, 863–880 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    R. M. Grounds, D. L. Maxwell, M. B. Taylor, V. Aber, and D. Royston, Acute ventilatory changes during i.v. induction of anaesthesia with thiopentone or propofol in man. Studies using inductance plethysmography, Br. J. Anaesth. 59, 1098–1102 (1987).CrossRefPubMedGoogle Scholar
  5. 5.
    N. W. Goodman, A. M. Black, and J. A. Carter, Some ventilatory effects of propofol as sole anaesthetic agent, Br. J. Anaesth. 59, 1497–1503 (1987).CrossRefPubMedGoogle Scholar
  6. 6.
    P. Kulkarni, and K. A. Brown, Ventilatory parameters in children during propofol anaesthesia: a comparison with halothane, Can. J. Anaesth. 43, 653–659 (1996).CrossRefPubMedGoogle Scholar
  7. 7.
    J. E. Sternlo, and R. H. Sandin, Recurrent respiratory depression after total intravenous anaesthesia with propofol and alfentanil. Anaesthesia 53, 378–381 (1998).CrossRefPubMedGoogle Scholar
  8. 8.
    J. E. Quandt, E. P. Robinson, W. J. Rivers, and M. R. Raffe, Cardiorespiratory and anesthetic effects of propofol and thiopental in dogs, Am. J. Vet. Res. 59, 1137–1143 (1998).PubMedGoogle Scholar
  9. 9.
    H. Onimaru, and I. Homma, Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat, Brain Res. 403, 380–384 (1987).CrossRefPubMedGoogle Scholar
  10. 10.
    Y. Okada, K. Mückenhoff, G. Holtermann, H. Acker, and P. Scheid, Depth profiles of pH and PO2 in the isolated brain stem-spinal cord of the neonatal rat, Respir. Physiol. 93, 315–326 (1993).CrossRefPubMedGoogle Scholar
  11. 11.
    Y. Okada, A. Kawai, K. Mückenhoff, and P. Scheid, Role of the pons in hypoxic respiratory depression in the neonatal rat, Respir. Physiol. 111, 55–63 (1998).CrossRefPubMedGoogle Scholar
  12. 12.
    A. Kawai, Y. Okada, K. Mückenhoff, and P. Scheid, Theophylline and hypoxic ventilatory response in the rat isolated brainstem-spinal cord, Respir. Physiol. 100, 25–32 (1995).CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Okada, S. Kuwana, and M. Iwanami, Respiratory suppression induced by nicotine withdrawal in the neonatal rat brainstem: implications in the SIDS risk factor, Adv. Exp. Med. Biol. 499, 187–194 (2001).PubMedGoogle Scholar
  14. 14.
    S. Kuwana, Y. Okada, and T. Natsui, Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat, Brain Res. 786, 194–204 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Okada, Z. Chen, W. Jiang, S. Kuwana, and F. L. Eldridge, Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats, J. Appl. Physiol. 93, 427–439 (2002).PubMedGoogle Scholar
  16. 16.
    S. Kuwana, Y. Okada, Y. Sugawara, N. Tsunekawa, and K. Obata, Disturbance of neural respiratory control in neonatal mice lacking GABA synthesizing enzyme 67-kDa isoform of glutamic acid decarboxylase, Neurosocience 120, 861–870 (2003).CrossRefGoogle Scholar
  17. 17.
    G. Liu, J. L. Feldman, and J. C. Smith, Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons, J. Neurophysiol. 64, 423–436 (1990).PubMedGoogle Scholar
  18. 18.
    J. J. Greer, J. C. Smith, and J. L. Feldman, Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat, J. Physiol. Lond. 437, 727–749 (1991).PubMedGoogle Scholar
  19. 19.
    J. J. Greer, J. C. Smith, and J. L. Feldman, Glutamate release and presynaptic action of AP4 during inspiratory drive to phrenic motoneurons, Brain Res. 576, 355–357 (1992).CrossRefPubMedGoogle Scholar
  20. 20.
    B. A. Orser, M. Bertlik, L. Y. Wang, and J. F. MacDonald, Inhibition by propofol (2, 6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones, Br. J. Pharmacol. 116, 1761–1768 (1995).PubMedGoogle Scholar
  21. 21.
    A. Kitamura, W. Marszalec, J. Z. Yeh, and T. Narahashi, Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons, J. Pharmacol. Exp. Ther. 304, 162–171 (2003).CrossRefPubMedGoogle Scholar
  22. 22.
    X. P. Dong, and T. L. Xu, The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat, Anesth. Analg. 95, 907–914 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    B. Antkowiak, Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABA(a) receptor, Anesthesiology 91, 500–511 (1999).CrossRefPubMedGoogle Scholar
  24. 24.
    K. Ballanyi, H. Onimaru H, and I. Homma, Respiratory network function in the isolated brainstem-spinal cord of newborn rats, Prog. Neurobiol. 59, 583–634 (1999).CrossRefPubMedGoogle Scholar
  25. 25.
    L. Schwieler, D. S. Delbro, G. Engberg, and S. Erhardt, The anaesthetic agent propofol interacts with GABA(B)-receptors: an electrophysiological study in rat, Life Sci. 72, 2793–2801 (2003).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Masanori Kashiwagi
    • 1
  • Yasumasa Okada
    • 2
  • Shun-ichi Kuwana
    • 3
  • Shigeki Sakuraba
    • 1
  • Ryoichi Ochiai
    • 1
  • Junzo Takeda
    • 1
  1. 1.Department of Anesthesiology, School of MedicineKeio UniversityTokyoJapan
  2. 2.Department of MedicineKeio University Tsukigase Rehabilitation CenterShizuoka-kenJapan
  3. 3.Department of PhysiologyTeikyo UniversityTokyoJapan

Personalised recommendations