Advertisement

Antioxidants Prevent Blunting of Hypoxic Ventilatory Response by Low-Dose Halothane

  • Albert Dahan
  • Raymonda Romberg
  • Elise Sarton
  • Luc Teppema
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

In adult humans, acute isocapnic hypoxia induces a brisk ventilatory response. This acute hypoxic response or AHR originates at the peripheral chemoreceptors of the carotid bodies.1,2 The full mechanisms of oxygen sensing at the carotid bodies (CB) is still poorly understood. At present it is thought that membrane ion channels (e.g. potassium channels) are critically involved and that low oxygen inhibits various K+-currents through the CB type I cell membrane (see reference #3 and references cited therein). This causes membrane depolarization and consequently the influx of calcium ions into the cell and the activation of a complex cascade of events within the type I cell. At the end of this cascade, the cell releases neurotransmitters (e.g., acetylcholine and ATP) which activate postsynaptic receptors located on afferent endings of the carotid sinus nerve.

Keywords

Carotid Body Ventilatory Response Minimum Alveolar Concentration Glomus Cell Peripheral Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fatemian, D. Nieuwenhuijs, L.J. Teppema, S. Meinesz, A. van der Mey, A. Dahan and P.A. Robbins. The respiratory response to carbon dioxide in humans with unilateral and bilateral resections of the carotid bodies. J. Physiol. (Lond.) 549, 965–973 (2003).CrossRefGoogle Scholar
  2. 2.
    M. Vizek, C.K. Picket and J.V. Weil. Biphasic ventilatory response of adult cats to sustained hypoxia has central origin. J. Appl. Physiol. 63, 1659–1664 (1987).Google Scholar
  3. 3.
    L.J. Teppema, D. Nieuwenhuijs, E. Sarton, R. Romberg, C.N. Olievier, D.S. Ward and A. Dahan. Antioxidants prevent depression of the acute hypoxic response by subanaesthetic halothane in men. J. Physiol. (Lond.) 54, 931–938 (2002).CrossRefGoogle Scholar
  4. 4.
    R.L. Knill and J.L. Clement. Site of selective action of halothane on the peripheral chemoreflex pathway in humans. Anesthesiology 61, 121–126 (1984).CrossRefPubMedGoogle Scholar
  5. 5.
    A. Dahan, M. van den Elsen, A. Berkenbosch, J. DeGoede, I.C.W. Olievier, J.W. van Kleef and J.G. Bovill. Effects of subanesthetic halothane on the ventilatory responses to hypercapnia and acute hypoxia in healthy volunteers. Anesthesiology 80, 727–738 (1994).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Dahan, M. van den Elsen, A. Berkenbosch, J. DeGoede, I. Olievier and J.W. van Kleef. Influence of a subanesthetic concentration of halothane on the ventilatory response to step changes into and out of sustained hypoxia in healthy volunteers. Anesthesiology 81, 850–859 (1994).CrossRefPubMedGoogle Scholar
  7. 7.
    M. van den Elsen, A. Dahan, J. DeGoede, A. Berkenbosch and J. van Kleef. Influences of subanesthetic isoflurane on ventilatory control in humans. Anesthesiology 83, 478–490 (1995).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Dahan, E. Sarton, M. van den Elsen, J. van Kleef, L. Teppema and A. Berkenbosch. Ventilatory responses to hypoxia in humans: influences of subanesthetic desflurane. Anesthesiology 85, 60–68 (1996).CrossRefPubMedGoogle Scholar
  9. 9.
    E. Sarton, A. Dahan, L. Teppema, M. van den Elsen, E. Olofsen, A. Berkenbosch and J. van Kleef. Acute pain and central nervous system arousal do not restore impaired hypoxic ventilatory response during sevoflurane sedation. Anesthesiology 85, 295–303 (1996).CrossRefPubMedGoogle Scholar
  10. 10.
    B. Nagyova, K.L. Dorrington, M.J. Poulin and P.A. Robbins. Influence of 0.2 minimum alveolar concentration of enflurane on the ventilatory response to sustained hypoxia in humans. Br. J. Anaesth. 78, 707–713 (1997).PubMedGoogle Scholar
  11. 11.
    M. van den Elsen, E. Sarton, L. Teppema, A. Berkenbosch and A. Dahan. Influence of 0.1 minimum alveolar concentration of sevoflurane, desflurane and isoflurane on dynamic ventilatory response to hypercapnia in humans. Br. J. Anaesth. 80, 174–82 (1998).PubMedGoogle Scholar
  12. 12.
    D. Nieuwenhuijs, E. Sarton, L.J. Teppema, E. Kruyt, I. Olievier, J. van Kleef and A. Dahan. Respiratory sites of action of propofol — absence of depression of peripheral chemoreflex loop by low-dose propofol. Anesthesiology 95, 889–895 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    S.O. Koh and J.W. Severinghaus. Effect of halothane on hypoxic and hypercapnic ventilatory responses of goats. Br. J. Anaesth. 65, 713–717 (1990).CrossRefPubMedGoogle Scholar
  14. 14.
    J. Ponte and C.L. Sadler. Effect of halothane, enflurane and isoflurane on carotid body chemoreceptor activity in the rabbit and the cat. Br. J. Anaesth. 62, 33–40 (1989).CrossRefPubMedGoogle Scholar
  15. 15.
    R.O. Davies, M.W. Edwards and S.L. Lahiri. Halothane depresses the response of carotid body chemore-ceptors to hypoxia and hypercapnia in the cat. Anesthesiology 57, 153–159 (1982).CrossRefPubMedGoogle Scholar
  16. 16.
    K.J. Buckler, B.A. Williams and E. Honore. An oxygen-, and acid and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. (Lond.) 525, 135–142 (2000).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Albert Dahan
    • 1
  • Raymonda Romberg
    • 1
  • Elise Sarton
    • 1
  • Luc Teppema
    • 1
  1. 1.Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations