Skip to main content

Modelling Respiratory Rhythmogenesis: Focus on Phase Switching Mechanisms

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

It has been established that the normal respiratory pattern (“eupnoea”) in mammals is generated in the lower brainstem1,2 and may involve several medullary and pontine regions. Although some researchers suggest that a smaller region within the medulla (e.g., the pre-Bötzinger Complex (pre-BötC) may be sufficient for the respiratory rhythm generation35, the eupnoeic respiratory rhythm (as well as apneustic breathing) has never been reproduced in reduced medullary preparations without the pons. At the same time, the specific ponto-medullary interactions related to genesis, shaping and control of the respiratory pattern have not been well characterized so far. Here we present a preliminary computational model of the ponto-medullary respiratory network that is considered a basis for the future interactive modeling-experimental studies. The model has been developed using a series of assumptions. Specifically, we have suggested that, under normal conditions in vivo, the eupnoeic respiratory rhythm is generated by a ponto-medullary network. Hence, although the pre-BötC is a necessary part of this network, the intrinsic oscillations in this region are suppressed during eupnoea by ponto-medullary interactions. These endogenous oscillations, however, may be released under some specific conditions, e.g., in vitro, because of the lack of the pons, or during hypoxia in vivo 6. We have also assumed that the medullary part of the respiratory network contains special neural circuits performing the respiratory phase switching. Moreover, these circuits are also targets for pulmonary feedback and inputs from the pons and major afferent nerves, which use the same medullary switching circuits to regulate the timing of phase transitions and modulate the respiratory motor pattern7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Lumsden, Observations on the respiratory centres in the cat, J. Physiol. Lond. 57, 153–160 (1923).

    CAS  PubMed  Google Scholar 

  2. M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal, Physiol. Rev. 59, 1105–1173 (1979).

    CAS  PubMed  Google Scholar 

  3. J. C. Smith, H. H. Ellenberger, K. Ballanyi, D. W. Richter, and J. L. Feldman, Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals, Science 254, 726–729 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. J. C. Rekling and J. L. Feldman, Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation, Ann. Rev. Physiol. 60, 385–405 (1998).

    Article  CAS  Google Scholar 

  5. S. P. Lieske, M. Thoby-Brisson, P. Telgkamp, and J. M. Ramirez, Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps, Nature Neurosci. 3, 600–607 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. W. M. St.-John, I. A. Rybak, and J. F. R. Paton, Potential switch from eupnea to fictive gasping after blockade of glycine transmission and potassium channels, Am. J. Physiol. (Integr. Comp. Physiol.) 283, R721–R731 (2002).

    CAS  Google Scholar 

  7. M. Okazaki, R. Takeda, H. Yamazaki, and A. Haji, Synaptic mechanisms of inspiratory off-switching evoked by pontine pneumotaxic stimulation in cats, Neurosci. Res. 44, 101–110 (2002).

    Article  PubMed  Google Scholar 

  8. D. W. Richter, Neural regulation of respiration: rhythmogenesis and afferent control. In: Comprehensive Human Physiology, edited by R. Gregor and U. Windhorst (Berlin: Springer-Verlag, 1996), vol. II, pp. 2079–2095.

    Google Scholar 

  9. A. Haji, M. Okazaki, H. Yamazaki, and R. Takeda, Physiological properties of late inspiratory neurons and their possible involvement in inspiratory off-switching in cats, J. Neurophysiol. 87, 1057–1067, (2001).

    Google Scholar 

  10. J. L. Feldman, Neurophysiology of breathing in mammals. In: Handbook of Physiology, edited by F. E. Bloom (Bethesda, MD: Am. Physiol. Soc., 1986), sec. 1, vol. 4, pp. 463–524.

    Google Scholar 

  11. E. E. Lawson, Prolonged central respiratory inhibition following reflex-induced apnea, J. Appl. Physiol. 50, 844–879 (1981).

    Google Scholar 

  12. J. E. Remmers, D. W. Richter, D. Ballantyne, C. R. Bainton, and J. P. Klein, Reflex prolongation of stage I of expiration, Pflügers Arch. 407, 190–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. F. J. Clark and C. von. Euler, On the regulation of depth and rate of breathing, J. Physiol. Lond. 222, 267–295 (1972).

    CAS  PubMed  Google Scholar 

  14. C. K. Knox, Characteristics of inflation and deinflation reflexes during expiration in the cat, J. Neurophysiol. 36, 284–295 (1973).

    CAS  PubMed  Google Scholar 

  15. J. Jodkowski, S. Coles, and T. E. Dick, A ‘pneumotaxic centre’ in rats, Neurosci. Lett, 172, 67–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. J. Jodkowski, S. Coles, and T. E. Dick, Prolongation in expiration evoked from ventrolateral pons of adult rats, J. Appl. Physiol. 82, 377–381 (1997).

    CAS  PubMed  Google Scholar 

  17. S. F. Morrison, S. L. Cravo, and H. M. Wilfehrt, Pontine lesions produce apneusis in the rat, Brain Res. 652, 83–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. W. M. St.-John, Neurogenesis of patterns of automatic ventilatory activity, Prog. Neurobiol. 56, 97–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. J. H. Peever, J. H. Mateika, and J. Duffin, Respiratory control of hypoglossal motoneurones in the rat, Pflügers Arch. 442, 78–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. I. A. Rybak, K. Ptak, N. A. Shevtsova, and D.R. McCrimmon, Sodium currents in neurons from the rostroventrolateral medulla of the rat, J. Neurophysiol. 90, 1635–1642 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. F. P. Elsen and J. Ramirez, Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice, J. Neurosci. 18, 10652–10662 (1998).

    CAS  PubMed  Google Scholar 

  22. D. Frermann, B. U. D. Keller, and D. W. Richter, Calcium oscillations in rhythmically active respiratory neurones in the brainstem of the mouse, J. Physiol. Lond. 515, 119–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: I. Models of respiratory neurons, J. Neurophysiol. 77, 1994–2006 (1997).

    CAS  PubMed  Google Scholar 

  24. I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: II. Network models of the central respiratory pattern generator, J. Neurophysiol. 77, 2007–2026 (1997).

    CAS  PubMed  Google Scholar 

  25. I. A. Rybak, N. A. Shevtsova, W. M. St.-John, J. F. R. Paton, and O. Pierrefiche, Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: Modelling and in vitro studies, Eur. J. Neurosci. 18, 239–257 (2003).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Rybak, I.A., Shevtsova, N.A., Paton, J.F.R., Pierrefiche, O., St.-John, W.M., Haji, A. (2004). Modelling Respiratory Rhythmogenesis: Focus on Phase Switching Mechanisms. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_29

Download citation

Publish with us

Policies and ethics