Advertisement

Modelling Respiratory Rhythmogenesis: Focus on Phase Switching Mechanisms

  • Ilya A. Rybak
  • Natalia A. Shevtsova
  • Julian F. R. Paton
  • Olivier Pierrefiche
  • Walter M. St.-John
  • Akira Haji
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

It has been established that the normal respiratory pattern (“eupnoea”) in mammals is generated in the lower brainstem1,2 and may involve several medullary and pontine regions. Although some researchers suggest that a smaller region within the medulla (e.g., the pre-Bötzinger Complex (pre-BötC) may be sufficient for the respiratory rhythm generation3, 4, 5, the eupnoeic respiratory rhythm (as well as apneustic breathing) has never been reproduced in reduced medullary preparations without the pons. At the same time, the specific ponto-medullary interactions related to genesis, shaping and control of the respiratory pattern have not been well characterized so far. Here we present a preliminary computational model of the ponto-medullary respiratory network that is considered a basis for the future interactive modeling-experimental studies. The model has been developed using a series of assumptions. Specifically, we have suggested that, under normal conditions in vivo, the eupnoeic respiratory rhythm is generated by a ponto-medullary network. Hence, although the pre-BötC is a necessary part of this network, the intrinsic oscillations in this region are suppressed during eupnoea by ponto-medullary interactions. These endogenous oscillations, however, may be released under some specific conditions, e.g., in vitro, because of the lack of the pons, or during hypoxia in vivo 6. We have also assumed that the medullary part of the respiratory network contains special neural circuits performing the respiratory phase switching. Moreover, these circuits are also targets for pulmonary feedback and inputs from the pons and major afferent nerves, which use the same medullary switching circuits to regulate the timing of phase transitions and modulate the respiratory motor pattern7.

Keywords

Vagal Stimulation Respiratory Pattern Neural Population Respiratory Rhythm Respiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Lumsden, Observations on the respiratory centres in the cat, J. Physiol. Lond. 57, 153–160 (1923).PubMedGoogle Scholar
  2. 2.
    M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal, Physiol. Rev. 59, 1105–1173 (1979).PubMedGoogle Scholar
  3. 3.
    J. C. Smith, H. H. Ellenberger, K. Ballanyi, D. W. Richter, and J. L. Feldman, Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals, Science 254, 726–729 (1991).CrossRefPubMedGoogle Scholar
  4. 4.
    J. C. Rekling and J. L. Feldman, Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation, Ann. Rev. Physiol. 60, 385–405 (1998).CrossRefGoogle Scholar
  5. 5.
    S. P. Lieske, M. Thoby-Brisson, P. Telgkamp, and J. M. Ramirez, Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps, Nature Neurosci. 3, 600–607 (2000).CrossRefPubMedGoogle Scholar
  6. 6.
    W. M. St.-John, I. A. Rybak, and J. F. R. Paton, Potential switch from eupnea to fictive gasping after blockade of glycine transmission and potassium channels, Am. J. Physiol. (Integr. Comp. Physiol.) 283, R721–R731 (2002).Google Scholar
  7. 7.
    M. Okazaki, R. Takeda, H. Yamazaki, and A. Haji, Synaptic mechanisms of inspiratory off-switching evoked by pontine pneumotaxic stimulation in cats, Neurosci. Res. 44, 101–110 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    D. W. Richter, Neural regulation of respiration: rhythmogenesis and afferent control. In: Comprehensive Human Physiology, edited by R. Gregor and U. Windhorst (Berlin: Springer-Verlag, 1996), vol. II, pp. 2079–2095.Google Scholar
  9. 9.
    A. Haji, M. Okazaki, H. Yamazaki, and R. Takeda, Physiological properties of late inspiratory neurons and their possible involvement in inspiratory off-switching in cats, J. Neurophysiol. 87, 1057–1067, (2001).Google Scholar
  10. 10.
    J. L. Feldman, Neurophysiology of breathing in mammals. In: Handbook of Physiology, edited by F. E. Bloom (Bethesda, MD: Am. Physiol. Soc., 1986), sec. 1, vol. 4, pp. 463–524.Google Scholar
  11. 11.
    E. E. Lawson, Prolonged central respiratory inhibition following reflex-induced apnea, J. Appl. Physiol. 50, 844–879 (1981).Google Scholar
  12. 12.
    J. E. Remmers, D. W. Richter, D. Ballantyne, C. R. Bainton, and J. P. Klein, Reflex prolongation of stage I of expiration, Pflügers Arch. 407, 190–198 (1986).CrossRefPubMedGoogle Scholar
  13. 13.
    F. J. Clark and C. von. Euler, On the regulation of depth and rate of breathing, J. Physiol. Lond. 222, 267–295 (1972).PubMedGoogle Scholar
  14. 14.
    C. K. Knox, Characteristics of inflation and deinflation reflexes during expiration in the cat, J. Neurophysiol. 36, 284–295 (1973).PubMedGoogle Scholar
  15. 15.
    J. Jodkowski, S. Coles, and T. E. Dick, A ‘pneumotaxic centre’ in rats, Neurosci. Lett, 172, 67–72 (1994).CrossRefPubMedGoogle Scholar
  16. 16.
    J. Jodkowski, S. Coles, and T. E. Dick, Prolongation in expiration evoked from ventrolateral pons of adult rats, J. Appl. Physiol. 82, 377–381 (1997).PubMedGoogle Scholar
  17. 17.
    S. F. Morrison, S. L. Cravo, and H. M. Wilfehrt, Pontine lesions produce apneusis in the rat, Brain Res. 652, 83–86 (1994).CrossRefPubMedGoogle Scholar
  18. 18.
    W. M. St.-John, Neurogenesis of patterns of automatic ventilatory activity, Prog. Neurobiol. 56, 97–117 (1998).CrossRefPubMedGoogle Scholar
  19. 19.
    J. H. Peever, J. H. Mateika, and J. Duffin, Respiratory control of hypoglossal motoneurones in the rat, Pflügers Arch. 442, 78–86 (2001).CrossRefPubMedGoogle Scholar
  20. 20.
    I. A. Rybak, K. Ptak, N. A. Shevtsova, and D.R. McCrimmon, Sodium currents in neurons from the rostroventrolateral medulla of the rat, J. Neurophysiol. 90, 1635–1642 (2003).CrossRefPubMedGoogle Scholar
  21. 21.
    F. P. Elsen and J. Ramirez, Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice, J. Neurosci. 18, 10652–10662 (1998).PubMedGoogle Scholar
  22. 22.
    D. Frermann, B. U. D. Keller, and D. W. Richter, Calcium oscillations in rhythmically active respiratory neurones in the brainstem of the mouse, J. Physiol. Lond. 515, 119–131 (1999).CrossRefPubMedGoogle Scholar
  23. 23.
    I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: I. Models of respiratory neurons, J. Neurophysiol. 77, 1994–2006 (1997).PubMedGoogle Scholar
  24. 24.
    I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: II. Network models of the central respiratory pattern generator, J. Neurophysiol. 77, 2007–2026 (1997).PubMedGoogle Scholar
  25. 25.
    I. A. Rybak, N. A. Shevtsova, W. M. St.-John, J. F. R. Paton, and O. Pierrefiche, Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: Modelling and in vitro studies, Eur. J. Neurosci. 18, 239–257 (2003).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Ilya A. Rybak
    • 1
  • Natalia A. Shevtsova
    • 1
  • Julian F. R. Paton
    • 2
  • Olivier Pierrefiche
    • 3
  • Walter M. St.-John
    • 4
  • Akira Haji
    • 5
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphia
  2. 2.Department of Physiology, School of Medical SciencesUniversity of BristolBristolUK
  3. 3.GRAP-JE-UFR de PharmacieAmiensFrance
  4. 4.Department of PhysiologyDartmouth Medical SchoolLebanon
  5. 5.Department of Pharmacology, Faculty of MedicineToyama Medical and Pharmaceutical UniversityToyamaJapan

Personalised recommendations