Serotonergic Receptors and Effects in Hypoglossal and Laryngeal Motoneurons

Semi-Quantitative Studies in Neonatal and Adult Rats
  • Denys V. Volgin
  • Victor B. Fenik
  • Richard Fay
  • Shlnlchi Okabe
  • Richard O. Davies
  • Leszek Kubin
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


Respiratory motoneurons of the brainstem express multiple receptors for serotonin (5-HT).1, 2, 3, 4, 5, 6, 7 Some of these receptors mediate excitatory effects (e.g., type 2), whereas others (e.g., type 1) are inhibitory, yet the net effect of 5-HT applied onto motoneurons of mature animals is excitation, and antagonism of endogenous serotonergic effects suppresses the activity in brainstem respiratory motoneurons.8, 9, 10 Since all brainstem serotonergic neurons consistently exhibit decreased activity during slow-wave sleep and are silenced during rapid eye movement (REM) sleep, it has been proposed that a withdrawal of serotonergic excitation from brainstem respiratory motoneurons may play an important role in sleep-related decrements of their activity.8 In individuals with anatomical abnormalities of their upper airway, such decrements may cause nocturnal upper airway obstructions, leading to the obstructive sleep apnea syndrome (reviewed in ref. 11).

Key words

development motoneurons serotonin receptors sleep single-cell RT-PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Manaker and P. C. Zucchi, Autoradiographic localization of neurotransmitter binding sites in the hypoglossal and motor trigeminal nuclei of the rat, Synapse 28, 44–59 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    G. Mengod, M. Pompeiano, M. I. Martínez-Mir, and J. M. Palacios, Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites, Brain Res. 524, 139–143 (1990).CrossRefPubMedGoogle Scholar
  3. 3.
    S. Okabe and L. Kubin, Role of 5HT1 receptors in the control of hypoglossal motoneurons in vivo, Sleep 19, S150–S153(1996).PubMedGoogle Scholar
  4. 4.
    S. Okabe, M. Mackiewicz, and L. Kubin, Serotonin receptor mRNA expression in the hypoglossal motor nucleus, Respir. Physiol. 110, 151–160 (1997).CrossRefPubMedGoogle Scholar
  5. 5.
    D. A. Bayliss, F. Viana, E. M. Talley, and A. J. Berger, Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms, Respir. Physiol. 110, 139–150 (1997).CrossRefPubMedGoogle Scholar
  6. 6.
    R. Fay and L. Kubin, Pontomedullary distribution of 5-HT2A receptor-like protein in the rat, J. Comp. Neurol. 418, 323–345 (2000).CrossRefPubMedGoogle Scholar
  7. 7.
    G. Zhan, F. Shaheen, M. Mackiewicz, P. Fenik, and S. C. Veasey, Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons, Neuroscience 113, 145–154 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    L. Kubin, H. Tojima, R. O. Davies, and A. I. Pack, Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat, Neurosci. Lett. 139, 243-248 (1992).Google Scholar
  9. 9.
    H. Arita, K. Ichikawa, and M. Sakamoto, Serotonergic cells in nucleus raphepallidus provide tonic drive to posterior cricoarytenoid motoneurons via 5-hydroxytryptamine2 receptors in cats, Neurosci. Lett. 197, 113–116(1995).CrossRefPubMedGoogle Scholar
  10. 10.
    P. Fenik and S. C. Veasey, Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus, Am. J. Respir. Crit. Care Med. 167, 563–569 (2003).CrossRefPubMedGoogle Scholar
  11. 11.
    L. Kubin and R. O. Davies, Mechanisms of airway hypotonia, in: Sleep Apnea. Pathogenesis, Diagnosis, and Treatment, edited by A. I. Pack (Dekker, New York, 2002), pp. 99–154.Google Scholar
  12. 12.
    D. Morin, R. Monteau, and G. Hilaire, Compared effects of serotonin on cervical and hypoglossal inspiratory activities: an in vitro study in the newborn rat, J. Physiol. (Lond.) 451, 605–629 (1992).Google Scholar
  13. 13.
    V. Fenik, R. O. Davies, A. I. Pack, and L. Kubin, Differential suppression of upper airway motor activity during carbachol-induced, REM sleep-like atonia, Am. J. Physiol. 275, R1013–R1024 (1998).PubMedGoogle Scholar
  14. 14.
    D. V. Volgin, M. Mackiewicz, and L. Kubin, α1B receptors are the main postsynaptic mediators of adrenergic excitation in brainstem motoneurons, a single-cell RT-PCR study, J. Chem. Neuroanat. 22, 157–166 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    D. V. Volgin, R. Fay, and L. Kubin, Postnatal developm ent of serotonin 1B, 2A and 2C receptors in brainstem motoneurons, Eur. J. Neurosci. 17, 1179–1188 (2003).CrossRefPubMedGoogle Scholar
  16. 16.
    V. Fenik, L. Kubin, S. Okabe, A. I. Pack, and R. O. Davies, Differential sensitivity of laryngeal and pharyngeal motoneurons to iontophoretic application of serotonin, Neuroscience 81, 873–885 (1997).CrossRefPubMedGoogle Scholar
  17. 17.
    H. Kimura, L. Kubin, R. O. Davies, and A. I. Pack, Cholinergic stimulation of the pons depresses respiration in decerebrate cats, J. Appl. Physiol. 69, 2280–2289 (1990).PubMedGoogle Scholar
  18. 18.
    J. H. Singer, M. C. Bellingham, and A. J. Berger, Presynaptic inhibition of glutamatergic synaptic transmission to rat motoneurons by serotonin, J. Neurophysiol. 76, 799–807 (1996).PubMedGoogle Scholar
  19. 19.
    A. J. Berger and P. Huynh, Activation of 5HT1B receptors inhibits glycinergic synaptic inputs to mammalian motoneurons during postnatal development, Brain Res. 956, 380–384 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    V. A. Bouryi and D. I. Lewis, The modulation by 5-HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurons in vitro, J. Physiol. (Lond.), 533, 1019–1031 (2003).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Denys V. Volgin
  • Victor B. Fenik
  • Richard Fay
  • Shlnlchi Okabe
  • Richard O. Davies
  • Leszek Kubin
    • 1
  1. 1.Department of Animal Biology 209E/VETUniv. of PennsylvaniaPhiladelphiaUSA

Personalised recommendations