Respiratory Role of Ionotropic Glutamate Receptors in the Rostral Ventral Respiratory Group of the Rabbit

  • Donatella Mutolo
  • Fulvia Bongianni
  • Tito Pantaleo
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


Neuronal mechanisms responsible for generating the eupneic pattern of breathing are localized within the pons and the medulla oblongata.1, 2, 3 Excitatory amino acids (EAAs) are known to be involved in the generation of rhythmic respiratory drive in mammals; both N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors are present within the medullary respiratory neuronal aggregates, and in particular in the ventral respiratory group (VRG).2,4 Recently, we have provided evidence5 that EAA-mediated neurotransmission controls the intensity of eupneic inspiratory activity within the intermediate, almost purely inspiratory VRG (iVRG) mainly through NMDA receptors, whilst it does not appear to have a significant role in shaping the pattern of breathing at the level of caudal VRG.


NMDA Receptor Kainic Acid Ionotropic Glutamate Receptor Respiratory Response Respiratory Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Feldman, G. S. Mitchell, and E. E. Nattie, Breathing: Rhythmicity, Plasticity, Chemosensitivity, Annu. Rev. Neurosci. 26, 239–266 (2003).CrossRefPubMedGoogle Scholar
  2. 2.
    A. L. Bianchi, M. Denavit-Saubie, and J. Champagnat, Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters, Physiol. Rev. 75, 1–45 (1995).PubMedGoogle Scholar
  3. 3.
    W. M. St John, Neurogenesis of patterns of automatic ventilatory activity, Prog. Neurobiol. 56, 97–117 (1998).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Haji, R. Takeda, and M. Okazaki, Neuropharmacology of control of respiratory rhythm and pattern in mature mammals, Pharmacol. Ther. 86, 277–304 (2000).CrossRefPubMedGoogle Scholar
  5. 5.
    F. Bongianni, D. Mutolo, M. Carfi, and T. Pantaleo, Respiratory responses to ionotropic glutamate receptor antagonists in the ventral respiratory group of the rabbit, Pflugers Arch. 444, 602–609 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Monnier, G. F. Alheid, and D. R. McCrimmon, Denning ventral medullary respiratory compartments with a glutamate receptor agonist in the rat, J. Physiol. 548, 859–874 (2003).CrossRefPubMedGoogle Scholar
  7. 7.
    J. C. Smith, R. J. Butera, N. Koshiya, C. Del Negro, C. G. Wilson, and S. M. Johnson, Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model, Respir. Physiol. 122, 131–147(2000).CrossRefPubMedGoogle Scholar
  8. 8.
    D. Mutolo, F. Bongianni, M. Carfi, and T. Pantaleo, Respiratory changes induced by kainic acid lesions in rostral ventral respiratory group of rabbits, Am. J. Physiol. (Regul. Integr. Comp Physiol.) 283, R227–R242 (2002).Google Scholar
  9. 9.
    F. Bongianni, D. Mutolo, and T. Pantaleo, Depressant effects on inspiratory and expiratory activity produced by chemical activation of Bötzinger complex neurons in the rabbit, Brain Res. 749, 1–9 (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    I. C. Solomon, N. H. Edelman, and J. A. Neubauer, Patterns of phrenic motor output evoked by chemical stimulation of neurons located in the pre-Bötzinger complex in vivo, J. Neurophysiol. 81, 1150–1161 (1999).PubMedGoogle Scholar
  11. 11.
    J. W. Shek, G. Y. Wen, and H. M. Wisniewski. Atlas of the Rabbit Brain and Spinal Cord. Karger, Basel, 1986.Google Scholar
  12. 12.
    F. Bongianni, D. Mutolo, M. Carfi, and T. Pantaleo, Area postrema glutamate receptors mediate respiratory and gastric responses in the rabbit, Neuroreport. 9, 2057–2062 (1998).CrossRefPubMedGoogle Scholar
  13. 13.
    L. Nowak, P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz, Magnesium gates glutamate-activated channels in mouse central neurones, Nature. 307, 462–465 (1984).CrossRefPubMedGoogle Scholar
  14. 14.
    O. Pierrefiche, S. W. Schwarzacher, A. M. Bischoff, and D. W. Richter, Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo, J. Physiol. 509, 245–254 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    M. D. Ogilvie, A. Gottschalk, K. Anders, D. W. Richter, and A. I. Pack, A network model of respiratory rhythmogenesis, Am. J. Physiol. 263, R962–R975 (1992).PubMedGoogle Scholar
  16. 16.
    I. A. Rybak, J. F. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator, J Neurophysiol. 77, 2007–2026 (1997).PubMedGoogle Scholar
  17. 17.
    D. W. Richter, D. Ballantyne, and J. E. Remmers, How is the respiratory rhythm generated? A model, News Physiol. Sci. 1, 109–112 (1986).Google Scholar
  18. 18.
    C. A. Connelly, E. G. Dobbins, and J. L. Feldman, Pre-Bötzinger complex in cats: respiratory neuronal discharge patterns, Brain Res. 590, 337–340 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    S. W. Schwarzacher, J. C. Smith, and D. W. Richter, Pre-Bötzinger complex in the cat, J. Neurophysiol. 73, 1452–1461 (1995).PubMedGoogle Scholar
  20. 20.
    R. St Jacques and W. M. St John, Transient, reversible apnoea following ablation of the pre-Bötzinger complex in rats, J. Physiol. 520, 303–314 (1999).CrossRefGoogle Scholar
  21. 21.
    Q. J. Sun, A. K. Goodchild, J. P. Chalmers, and P. M. Pilowsky, The pre-Bötzinger complex and phase-spanning neurons in the adult rat, Brain Res. 809, 204–213 (1998).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Donatella Mutolo
    • 1
  • Fulvia Bongianni
    • 1
  • Tito Pantaleo
    • 1
  1. 1.Dipartimento di Scienze FisiologicheUniversità di FirenzeFirenzeItaly

Personalised recommendations