Advertisement

Breathing Without Acetylcholinesterase

  • Fabrice Chatonnet
  • Eliane Boudinot
  • Arnaud Chatonnet
  • Jean Champagnat
  • Arthur S. Foutz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

Acetylcholine (ACh) mediates neurotransmission at the neuromuscular junction and is involved in respiratory control1, notably chemosensitivity2 of central and peripheral origin. The level of ACh at the synaptic cleft and neuromuscular junction is regulated by the enzyme acetylcholinesterase (AChE). Blockade of AChE by organophosphorus compounds produces death by respiratory failure3, but despite the absence of AChE activity in all tissues, AChE (-/-) mice knockout for the gene coding for AChE develop to term4 and survive to adulthood if provided special care5. However, they show many aspects of a cholinergic syndrome, such as pinpoint pupils and muscle tremors5.

Keywords

Neuromuscular Junction Ventilatory Response Respiratory Frequency Tonic Activity Burst Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Haji, R. Takeda, and M. Okazaki, Neuropharmacology of control of respiratory rhythm and pattern in mature mammals, Pharmacol. Ther. 86, 277–304 (2000).CrossRefPubMedGoogle Scholar
  2. 2.
    M. D. Burton, and H. Kazemi, Neurotransmitters in central respiratory control, Respir. Physiol. 122, 111–121 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    R. W. Brimblecombe, Drugs acting on cholinergic mechanisms and affecting respiration, in: Respiratory Pharmacology, edited by J. Widdicombe (Pergamon Press, Oxford, 1981), pp. 175–184.Google Scholar
  4. 4.
    W. Xie, J. A. Stribley, A. Chatonnet, P. J. Wilder, A. Rizzino, R. D. McComb, P. Taylor, S. H. Hinrichs, and O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase, J. Pharmacol. Exp. Ther. 293, 896–902 (2000).PubMedGoogle Scholar
  5. 5.
    E. G. Duysen, J. A. Stribley, D. L. Fry, S. H. Hinrichs and O. Lockridge, Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse, Dev. Brain Res. 137, 43–54 (2002).CrossRefGoogle Scholar
  6. 6.
    F. Chatonnet, E. Boudinot, A. Chatonnet, L. Taysse, S. Daulon, J. Champagnat, and A. S. Foutz, respiratory survival mechanisms in acetylcholinesterase knockout mouse, Eur. J. Neurosci. 18, 1419–1427 (2003).CrossRefPubMedGoogle Scholar
  7. 7.
    A. S. Foutz, E. Boudinot, and M. Denavit-Saubié, Central respiratory depression induced by acetylcholinesterase inhibition: involvement of anaesthesia, Eur. J. Pharmacol. 142, 207–213 (1987).CrossRefPubMedGoogle Scholar
  8. 8.
    A. S. Foutz, I.S. Delamanche, and M. Denavit-Saubié, Persistence of central respiratory rhythmogenesis after maximal acetylcholinesterase inhibition in unanaesthetized cats, Can. J. Physiol. Pharmacol. 67, 162–166 (1989).PubMedGoogle Scholar
  9. 9.
    M. D. Burton, D. C. Johnson, and H. Kazemi. The central respiratory effects of acetylcholine vary with CSF pH, J. Auton. Nerv. Syst. 62, 27–32. (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    X. M. Shao, and J. L. Feldman, Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in pre-Bötzinger complex inspiratory neurons, J. Neurophysiol. 83, 1243–1252 (2000).PubMedGoogle Scholar
  11. 11.
    X. M. Shao, and J. L. Feldman, Mechanisms underlying regulation of respiratory pattern by nicotine in preBötzinger complex, J. Neurophysiol. 85, 2461–2467 (2001).PubMedGoogle Scholar
  12. 12.
    J. Minic, A. Chatonnet, E. Krejci, and J. Molgó, Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions, Br. J. Pharmacol. 138, 177–187 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    E. E. Nattie, and A. Li, Ventral medulla sites of muscarinic receptor subtypes involved in cardiorespiratory contro, J. Appl. Physiol. 69, 33–41 (1990).PubMedGoogle Scholar
  14. 14.
    A. Haji, S. Furuichi, and R. Takeda, Effects of iontophoretically applied acetylcholine on membrane potential and synaptic activity of bulbar respiratory neurones in decerebrate cats, Neuropharmacology 35, 195–203 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    V. Bernard, C. Brana, I. Liste, O. Lockridge, and B. Bloch, Dramatic depletion of cell surface m2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice, Mol. Cell. Neurosci. 23, 121–133 (2003).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Fabrice Chatonnet
    • 1
  • Eliane Boudinot
    • 1
  • Arnaud Chatonnet
    • 2
  • Jean Champagnat
    • 1
  • Arthur S. Foutz
    • 1
  1. 1.NGI—Institut de Neurobiologie A. FessardCNRSGif sur YvetteFrance
  2. 2.Dept of animal physiologyINRAMontpellierFrance

Personalised recommendations