Role of GABA in Central Respiratory Control Studied in Mice Lacking GABA-Synthesizing Enzyme 67-kDa Isoform of Glutamic Acid Decarboxylase

  • Shun-ichi Kuwana
  • Yasumasa Okada
  • Yoshiko Sugawara
  • Kunlhlko Obata
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


In in vivo adult mammals, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has been shown to play an essential role in the termination of the respiratory phase in the central respiratory rhythm generator.1, 2, 3 On the other hand, works with in vitro brainstem-spinal cord preparations have revealed that the respiratory rhythm of neonatal rats is unaffected by blockade of GABAergic and glycinergic receptors.46 These results suggest that either GABAergic or glycinergic synaptic inhibition is not essential for the generation of respiratory rhythm in neonatal mammals. We recently analyzed the role of GABA in the generation of respiratory rhythm and pattern and reported that GABA plays an important role in the maintenance of regular respiratory rhythm and normal inspiratory pattern in neonatal mice7. However, the precise role of GABA in the generation of respiratory rhythm and pattern in neonatal mammals is not well understood at the level of respiratory neurons.


Glutamic Acid Decarboxylase Neonatal Mouse Respiratory Rhythm Inspiratory Phase Respiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Richter, K. Ballanyi, and S. Schwarzacher, Mechanisms of respiratory rhythm generation, Curr. Opin. Neurobiol. 2, 788–793 (1992).CrossRefPubMedGoogle Scholar
  2. 2.
    D.W. Richter, S.L. Mironov, D. Busselberg, P.M. Lalley, A.M. Bischoff, and M.H. Wilkinson, Respiratory rhythm generation: Plasticity of a neuronal network, Neuroscientist 6, 181–198 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Haji, R. Takeda, and M. Okazaki, Neuropharmacology of control of respiratory rhythm and pattern in mature mammals, Pharmacol. Ther. 86, 277–304 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    T. Murakoshi, and M. Otsuka, Respiratory reflexes in an isolated brainstem-lung preparation of the newborn rat: possible involvement of gamma-aminobutyric acid and glycine, Neurosci. Lett. 62, 63–68 (1985).CrossRefPubMedGoogle Scholar
  5. 5.
    J.L. Feldman, and J.C. Smith, Cellular mechanisms underlying modulation of breathing pattern in mammals, Ann. N.Y. Acad. Sci. 563, 114–130 (1989).CrossRefPubMedGoogle Scholar
  6. 6.
    H. Onimaru, A. Arata, and I. Homma, Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats, Pflügers Arch. 417, 425–432 (1990).CrossRefPubMedGoogle Scholar
  7. 7.
    S. Kuwana, Y. Okada, Y. Sugawara, N. Tsunekawa, and K. Obata, Disturbance of neural respiratory control in neonatal mice lacking GABA synthesizing enzyme 67-kDa isoform of glutamic acid decarboxylase, Neuroscience 120, 861–870 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    K. Obata, M. Oide, and H. Tanaka, Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture, Brain Res. 144, 179–184 (1978).CrossRefPubMedGoogle Scholar
  9. 9.
    E. Cherubini, J.L. Gaiarsa, and Y. Ben-Ari, GABA: an excitatory transmitter in early postnatal life. Trends Neuwsci. 14, 515–519 (1991).CrossRefGoogle Scholar
  10. 10.
    Y. Ben-Ari, R. Khazipov, X. Leinekugel, O. Caillard, and J.L. Gaiarsa, GABAA, NMDA and AMPA receptors: a developmentally regulated ‘menage a trois’, Trends Neurosci. 20, 523–529 (1997).CrossRefPubMedGoogle Scholar
  11. 11.
    K. Obata, Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture, Dev. Neurosci. 19, 117–119 (1997).CrossRefPubMedGoogle Scholar
  12. 12.
    X.B. Gao, and A.N. van den Pol, GABA release from mouse axonal growth cones. J. Physiol. Lond. 523 Pt 3, 629–637 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    X.B. Gao, and A.N. van den Pol, GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434 (2001).PubMedGoogle Scholar
  14. 14.
    T.D. Jacquin, V. Borday, S. Schneider-Maunoury, P. Topilko, G. Ghilini, F. Kato, P. Charnay, and J. Cham-pagnat, Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice, Neuron 17, 747–758 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    G.D. Funk, S.M. Johnson, J.C. Smith, X.W. Dong, J. Lai, and J.L. Feldman, Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene, J. Neurophysiol. 78, 1414–1420 (1997).PubMedGoogle Scholar
  16. 16.
    S. Shirasawa, A. Arata, H. Onimaru, K.A. Roth, G.A. Brown, S. Horning, S. Arata, K. Okumura, T. Sasazuki, and S.J. Korsmeyer, Rnx deficiency results in congenital central hypoventilation, Nat. Genet. 24, 287–290 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    J. Zhao, H. Chen, J.J. Peschon, W. Shi, Y. Zhang, S.J. Frank, and D. Warburton, Pulmonary hypoplasia in mice lacking tumor necrosis factor-α converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis, Dev. Biol. 232, 204–218 (2001).CrossRefPubMedGoogle Scholar
  18. 18.
    H. Asada, Y. Kawamura, K. Maruyama, H. Kume, R.G. Ding, N. Kanbara, H. Kuzume, M. Sanbo, T. Yagi, and K. Obata, K. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase, Proc. Natl. Acad. Sci. U.S.A. 94, 6496–6499 (1997).CrossRefPubMedGoogle Scholar
  19. 19.
    Y. Okada, A. Kawai, K. Mückenhoff, and P. Scheid, Role of the pons in hypoxic respiratory depression in the neonatal rat, Respir. Physiol. 111, 55–63 (1998).CrossRefPubMedGoogle Scholar
  20. 20.
    S. Kuwana, Y. Okada, and T. Natsui, Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat, Brain Res. 786, 194–204 (1998).CrossRefPubMedGoogle Scholar
  21. 21.
    X.M. Shao, and J.L. Feldman, Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission, J. Neurophysiol. 77, 1853–1860 (1997).PubMedGoogle Scholar
  22. 22.
    J. Brockhaus, and K. Ballanyi, Synaptic inhibition in the isolated respiratory network of neonatal rats, Eur. J. Neurosci. 10, 3823–3839 (1998).CrossRefPubMedGoogle Scholar
  23. 23.
    K. Ganguly, A.F. Schinder, S.T. Wong, and M. Poo, GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition, Cell 105, 521–532 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Shun-ichi Kuwana
    • 1
  • Yasumasa Okada
    • 2
  • Yoshiko Sugawara
    • 1
  • Kunlhlko Obata
    • 3
  1. 1.Department of PhysiologyTeikyo University School of MedicineTokyoJapan
  2. 2.Department of MedicineKeio University Tsukigase Rehabilitation CenterShizuokaJapan
  3. 3.Neural Circuit Mechanisms Research GroupRIKEN Brain Science InstituteWakoJapan

Personalised recommendations