A Dual-Role Played by Extracellular ATP in Frequency-Filtering of the Nucleus Tractus Solltarii Network

  • Fusao Kato
  • Eiji Shigetomi
  • Koji Yamazaki
  • Noriko Tsuji
  • Kazuo Takano
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


ATP is now identified to be an important signaling molecule in the CNS1, 2, 3. However, there are only few brain regions in which the function of ATP-mediated signaling is demonstrated from the molecular to whole animal levels. The caudal part of the nucleus of the solitary tract (cNTS) is such a rare structure. In the cNTS, neuronal ATP release4,5, hypoxia-induced increase in purine concentration6, abundant expression of P2X and P2Y receptors7, 8, 9, 10, 11, 12, extracellular hydrolysis of ATP to adenosine4,13, and rich expression of adenosine transporters14 have been demonstrated. In addition, a microinjection of agonists for P2X and adenosine receptors into cNTS in anesthetized rats exerts profound cardiorespiratory effects15, 16, 17. Taken together, ATP, in tandem with its extracellular metabolite adenosine, is thought to be involved in the neuronal signaling in the cNTS, where various visceral signals including those from pulmonary stretch receptors and peripheral chemoreceptor converge.


Nucleus Tractus Solitarii Solitary Tract Pulmonary Stretch Receptor Gallamine Triethiodide sEPSC Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Robertson, S. J. Ennion, R. J. Evans and F. A. Edwards, Synaptie P2X receptors, Curr. Opin. Neurobiol., 11, 378–386 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    R. A. North, Molecular Physiology of P2X Receptors, Physiol. Rev., 82, 1013–1067 (2002).PubMedGoogle Scholar
  3. 3.
    B. S. Khakh, Molecular physiology of P2X receptors and ATP signalling at synapses, Nat. Rev. Neurosci., 2, 165–174 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    N. Dale, A. V. Gourine, E. Llaudet, D. Bulmer, T. Thomas and K. M. Spyer, Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo, J. Physiol. (Lond), 544, 149–160 (2002).CrossRefGoogle Scholar
  5. 5.
    J. H. St Lambert, T. Thomas, G. Burnstock and K. M. Spyer, A source of adenosine involved in cardiovascular responses to defense area stimulation, Amer. J. Physiol., 272, R195–R200 (1997).PubMedGoogle Scholar
  6. 6.
    R. A. Barraco, G. A. Walter, P. M. Polasek and J. W. Phillis, Purine concentrations in the cerebrospinal fluid of unanesthetized rats during and after hypoxia, Neurochem. Int., 18, 243–248 (1991).CrossRefPubMedGoogle Scholar
  7. 7.
    I. von Kögelgen and A. Wetter, Molecular pharmacology of P2Y-receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol, 362, 310–323 (2000).CrossRefGoogle Scholar
  8. 8.
    G. Collo, R. A. North, E. Kawashima, E. Merlo-Pich, S. Neidhart, A. Surprenant and G. Buell, Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels, J. Neurosci., 16, 2495–2507 (1996).PubMedGoogle Scholar
  9. 9.
    L. Vulchanova, M. S. Riedl, S. J. Shuster, G. Buell, A. Surprenant, R. A. North and R. Elde, Immunohistochemical study of the P2x2 and P2x3 receptor subunits in rat and monkey sensory neurons and their central terminals, Neuropharmacol., 36, 1229–1242 (1997).CrossRefGoogle Scholar
  10. 10.
    R. Kanjhan, G. D. Housley, L. D. Burton, D. L. Christie, A. Kippenberger, P. R. Thorne, L. Luo and A. F. Ryan, Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system, J. Comp. Neurol., 407, 11–32 (1999).CrossRefPubMedGoogle Scholar
  11. 11.
    L. Atkinson, T. F. C. Batten and J. Deuchars, P2X2 peceptor immunoreactivity in the dorsal vagal complex and area postrema of the rat, Neuroscience, 99, 683–696 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    S. T. Yao, J. A. Barden and A. J. Lawrence, On the immunohistochemical distribution of ionotropic P2X receptors in the nucleus tractus solitarius of the rat, Neuroscience, 108, 673–685 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    F. Kato and E. Shigetomi, Distinct modulation of evoked and spontaneous EPSCs by purinoceptors in the nucleus tractus solitarii of the rat, J. Physiol. (Lond), 530, 469–486 (2001).CrossRefGoogle Scholar
  14. 14.
    J. C. Bisserbe, J. Patel and P. J. Marangos, Autoradiographic localization of adenosine uptake sites in rat brain using [3H]nitrobenzylthioinosine, J. Neumsci., 5, 544–550 (1985).Google Scholar
  15. 15.
    J. W. Phillis, T. J. Scislo and D. S. O’Leary, Purines and the nucleus tractus solitarius: Effects on cardiovascular and respiratory function, Clin. Exp. Pharmacol. Physiol., 24, 738–742 (1997).CrossRefPubMedGoogle Scholar
  16. 16.
    K. M. Spyer, J. H. St Lambert and T. Thomas, Central nervous system control of cardiovascular function: neural mechanisms and novel modulators, Clin. Exp. Pharmacol. Physiol., 24, 743–747 (1997).CrossRefPubMedGoogle Scholar
  17. 17.
    T. J. Scislo, A. M. Kitchen, R. A. Augustyniak and D. S. O’Leary, Differential patterns of sympathetic responses to selective stimulation of nucleus tractus solitarius purinergic receptor subtypes, Clin. Exp. Pharmacol. Physiol., 28, 120–124 (2001).CrossRefPubMedGoogle Scholar
  18. 18.
    J. F. R. Paton, W. T. Rogers and J. S. Schwaber, Tonically rhythmic neurons within a cardiorespiratory region of the nucleus tractus solitarii of the rat, J. Neurophysiol., 66, 824–838 (1991).PubMedGoogle Scholar
  19. 19.
    G. Fortin and J. Champagnat, Spontaneous synaptic activities in rat nucleus tractus solitarius neurons in vitro: evidence for re-excitatory processing, Brain Res., 630, 125–135 (1993).CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Kawai and E. Senba, Organization of excitatory and inhibitory local networks in the caudal nucleus of tractus solitarius of rats revealed in In Vitro slice preparation, J. Comp. Neurol., 373, 309–321 (1996).CrossRefPubMedGoogle Scholar
  21. 21.
    K. Takano and F. Kato, Inspiration-promoting vagal reflex under NMDA receptor blockade in anaesthetized rabbits, J. Physiol. (Lond), 516, 571–582 (1999).CrossRefGoogle Scholar
  22. 22.
    K. Takano and F. Kato, Inspiration-promoting vagal reflex in anaesthetized rabbits after rostral dorsolateral pons lesions, J. Physiol. (Lond), 550, 973–983 (2003).CrossRefGoogle Scholar
  23. 23.
    M. Denavit-Saubié and A. S. Foutz, Neuropharmacology of respiration, in “Neural Control of the Respiratory Muscles” (A. D. Miller, A. L. Bianchi and B. P. Bishop, Eds.), CRC Press, Boca Raton, New York (1996).Google Scholar
  24. 24.
    R. Miles, Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro, J. Neurophysiol, 55, 1076–1090 (1986).PubMedGoogle Scholar
  25. 25.
    Z. Liu, C.-Y. Chen and A. C. Bonham, Frequency limits on aortic baroreceptor input to nucleus tractus solitarii, Am. J. Physiol. Heart Circ. Physiol., 278, H577–H585 (2000).PubMedGoogle Scholar
  26. 26.
    N. Tsuji, E. Shigetomi, K. Yamazaki and F. Kato, Activation of presynaptic adenosine A1 receptors in the nucleus of the solitary tract slows transmitter release adaptation during repeated stimulation of the primary afferents in the rat, 2003 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC (2003). 686.9.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Fusao Kato
    • 1
  • Eiji Shigetomi
    • 1
  • Koji Yamazaki
    • 1
  • Noriko Tsuji
    • 1
  • Kazuo Takano
    • 2
  1. 1.Laboratory of Neurophysiology, Department of NeuroscienceJikei University School of MedicineTokyoJapan
  2. 2.Department of PharmacologyJikei University School of MedicineTokyoJapan

Personalised recommendations