Advertisement

Breathing at Birth: Influence of Early Developmental Events

  • Gilles Fortin
  • Caroline Borday
  • Isabelle Germon
  • Jean Champagnat
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

Respiration is a rhythmic motor behavior that appears in the fetus and acquires a vital importance at birth. It is generated centrally, within neuronal networks of the brainstem. Recently, examination of hindbrain activities in the embryo has revealed that a central rhythm generator is active in the brainstem before fetal maturation and conforms to the segmented organization of the embryonic hindbrain at this stage of development. From physiological studies of this primordial rhythm generator in embryos, we may therefore gain an understanding of how genes govern development of neuronal networks and specify patterns of motor activities operating throughout life.

Keywords

Neuronal Network Respiratory Rhythm Rhythm Generation GABAergic Inhibition Respiratory Rhythm Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lumsden, A. and Krumlauf, R., 1996, Patterning the vertebrate neuraxis. Science 274: 1109–1115.CrossRefPubMedGoogle Scholar
  2. 2.
    Fortin, G., Champagnat, J. and Lumsden, A., 1994, Onset and maturation of branchiomotor activities in the chick hindbrain. NeuroReport, 5, 1149–1152.CrossRefPubMedGoogle Scholar
  3. 3.
    Champagnat, J. and Fortin, G., 1997, Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends in Neurosciences, 20: 119–124.CrossRefPubMedGoogle Scholar
  4. 4.
    Fortin, G. et al., 1999, Segmental specification of GABAergic inhibition during development of hindbrain neural networks. Nature Neuroscience 2: 873–877.CrossRefPubMedGoogle Scholar
  5. 5.
    Schneider-Maunoury, et al., 1993, Disruption of Krox-20 results in alteration of rhombomere 3 and 5 in the developing hindbrain. Cell 75: 1199–1214.CrossRefPubMedGoogle Scholar
  6. 6.
    Mark, et al., 1993, Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338.PubMedGoogle Scholar
  7. 7.
    Chatonnet, F. et al., 2002, Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice, 2002, European Journal of Neuroscience 15:684–692.CrossRefPubMedGoogle Scholar
  8. 8.
    Dominguez, et al., 2001, Generation of a novel functional neuronal circuit in Hoxa1 mutant mice. J Neurosci. 2001 Aug 1; 21(15): 5637–42.Google Scholar
  9. 9.
    Fortin, G. et al., 2000, Genetic and Developmental Models for the Neural Control of Breathing in Vertebrates. Respiration Physiology, 122: 247–257.CrossRefPubMedGoogle Scholar
  10. 10.
    Jacquin, T. D., et al., 1996, Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17: 747–758.CrossRefPubMedGoogle Scholar
  11. 11.
    Manzanares, et al., 1999, The role of kreisler in segmentation during hindbrain development. Developmental Biology 211(2), 220–237.CrossRefPubMedGoogle Scholar
  12. 12.
    Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and Feldman, J.L., 1991, Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals, Science 254, 726–729.CrossRefPubMedGoogle Scholar
  13. 13.
    Thoby-Brisson, M., Cauli, B., Champagnat, J., Fortin, G., and Katz, D. M., 2003, Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the pre-Bötzinger complex of neonatal mice. J. Neurosci. 23, 7685–7689.PubMedGoogle Scholar
  14. 14.
    Onimaru, H. Arata, A., and Homma, I., 1990, Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats. Pflügers Arch. 417, 425–432.CrossRefPubMedGoogle Scholar
  15. 15.
    Onimaru H. and Homma I., 2003, A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci. 23: 1478–86.PubMedGoogle Scholar
  16. 16.
    Chatonnet, F., Dominguez del Toro E., Thoby-Brisson M., Champagnat, J., Fortin, G., Rijli F. M., Thaeron-Antono C., 2003, From hindbrain segmentation to breathing after birth: developmental patterning in rhombomeres 3 and 4. Mol Neurobiol. 28: 277–94.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Gilles Fortin
    • 1
  • Caroline Borday
    • 1
  • Isabelle Germon
    • 1
  • Jean Champagnat
    • 1
  1. 1.Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred FessardCNRSGif sur YvetteFrance

Personalised recommendations