Advertisement

BDNF Preferentially Targets Membrane Properties of Rhythmically Active Neurons in the pre-Bötzinger Complex in Neonatal Mice

  • Muriel Thoby-Brisson
  • Sandra Autran
  • Gilles Fortin
  • Jean Champagnat
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)

Abstract

Neurotrophins are a class of factors known to be involved in the development, maintenance, plasticity and survival of the peripheral and central nervous systems1. Neurotrophins are active through high-affinity receptors having an intrinsic tyrosine-kinase activity2,3. One of these neurotrophins, the brain-derived neurotrophic factor (BDNF) has been shown to be involved in a wide range of developmental and plasticity mechanisms and its biological action depends mainly upon activation of the TrkB receptor sub-type and to a less extent to the p75 receptors. BDNF binding on TrkB receptors initiates a cascade of events of phosphorylation that activate a complex of signal proteins and the induction of several genes4.

Keywords

Membrane Property Respiratory Rhythm Respiratory Rhythm Generation Rhythmic Neuron BDNF Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Huang and L. F. Reichardt, Neurotrophins: role in neuronal development and function, Aram. Rev. Neurosci. 24, 677–736 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Barbacid, The Trk family of neurotrophin receptors, J. Neurobiol. 25, 1386–1403 (1994).CrossRefPubMedGoogle Scholar
  3. 3.
    E. J. Huang and L. F. Reichardt, Trk receptors: Roles in neuronal signal transduction, Annu. Rev. Biochem. 72, 609–642 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    R. A. Segal and M. E. Greenberg, Intracellular signaling pathways activated by neurotrophic factors, Annu. Rev. Neurosci. 19, 463–489 (1996).PubMedGoogle Scholar
  5. 5.
    J. T. Erickson, J. C. Conover, V. Borday, J. Champagnat, M. Barbacid, G. Yancopoulos and D. M. Katz, Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing, J. Neurosci. 16, 5361–5371 (1996).PubMedGoogle Scholar
  6. 6.
    A. Balkowiec, and D. M. Katz, Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice, J. Physiol. (London) 510, 527–533 (1998).CrossRefGoogle Scholar
  7. 7.
    J. C. Smith, H. H. Ellenberger, K. Ballanyi, D. W. Richter and J. L. Feldman, Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals, Science 254, 726–729 (1991).CrossRefPubMedGoogle Scholar
  8. 8.
    J. C. Rekling and J. L. Feldman, Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation, Annu. Rev. Physiol. 60, 385–405 (1998).CrossRefPubMedGoogle Scholar
  9. 9.
    J. M. Ramirez, U. J. A. Quellmalz and D. W. Richter, Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice preparation of mice, J. Physiol. (London). 491, 799–812. (1996).Google Scholar
  10. 10.
    B. Cauli, E. Audinat, B. Lambolez, M. C. Angulo, N. Ropert, K. Tsuzuki S. Hestrin and J. Rossier, Molecular and physiological diversity of cortical non-pyramidal cells, J. Neurosci. 17, 3894–3906 (1997).PubMedGoogle Scholar
  11. 11.
    M. Thoby-Brisson, B. Cauli, J. Champagnat, G. Fortin and D. M. Katz, Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the pre-Bötzinger complex of neonatal mice, J. Neurosci. 23, 7685–7689 (2003).PubMedGoogle Scholar
  12. 12.
    M. Thoby-Brisson, P. Telgkamp and J. M. Ramirez, The role of the hyperpolarization-activated current in modulating rhythmic activity in the isolated respiratory neural network of mice, J. Neurosci. 20, 2994–3005 (2000).PubMedGoogle Scholar
  13. 13.
    F. F. Eide, E. R. Vining, B. L. Eide, K. Zang, X. Y. Wang and L. F. Reichardt, Naturally occurring truncated trkB receptors have dominant inhibiting effects on brain-derived neurotrophic factor signaling, J. Neurosci. 16, 3123–3129 (1996).PubMedGoogle Scholar
  14. 14.
    R. M. Lindsay, S. J. Wiegand, C. A. Altar and P. S. DiStefano, Neurotrophic factors: from molecule to man, TINS. 17, 182–190 (1994).PubMedGoogle Scholar
  15. 15.
    M. Bibel, E. Hoppe, and Y. A. Barde, Biochemical and functional Interactions between the neurotrophin receptors TrkB and p75NTR, EMBO J. 18, 616–622 (1999).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Muriel Thoby-Brisson
    • 1
  • Sandra Autran
    • 1
  • Gilles Fortin
    • 1
  • Jean Champagnat
    • 1
  1. 1.Neurobiologie Génétique et Intégrative—Institut de Neurobiologie A. FessardCNRSGif sur YvetteFrance

Personalised recommendations