Converging Functional and Anatomical Evidence for Novel Brainstem Respiratory Compartments in the Rat

  • Donald R. McCrimmon
  • George F. Alheid
  • Minchun Jiang
  • Tara Calandriello
  • Anupama Topgi
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


Central nervous system circuits controlling respiratory motoneurons have usually been divided into a dorsal medullary respiratory group—associated with portions of the nucleus of the solitary tract, a ventrolateral medullary respiratory group—mostly ventral to the motoneurons of nucleus ambiguus, and a pontine respiratory group—associated with portions of the parabrachial nuclear complex. When visualized via retrograde labeling of neurons from injections within the ventrolateral medulla (Fig. 1 A), the labeled aggregates of respiratory-related neurons in the pons and medulla appear to form a practically continuous column of cells. These are concentrated in lateral brainstem areas stretching from the caudal mesencephalon, through the pons and medulla14. This pattern of labeling highlights the rostrocaudal columnar organization of respiratory neurons that integrates respiratory control across the entire extent of the rhombencephalon. A second organizational theme is represented by a rostrocaudal segmentation of respiratory neurons within this column into functional compartments (Fig. 1B).


Respiratory Rhythm Ventrolateral Medulla Retrograde Label Nucleus Ambiguus Respiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.H. Ellenberger, J.L. Feldman, Brainstem connections of the rostral ventral respiratory group of the rat, Brain Res. 513, 35–42 (1990).CrossRefPubMedGoogle Scholar
  2. 2.
    H.H. Ellenberger, J.L. Feldman, Subnuclear organization of the lateral tegmental field of the rat. I: Nucleus ambiguus and ventral respiratory group, J. Comp. Neurol. 294, 202–211 (1990).CrossRefPubMedGoogle Scholar
  3. 3.
    P.A. Núñez-Abades, A.M. Morillo, R. Pásaro, Brainstem connections of the rat ventral respiratory subgroups: afferent projections, J. Auton. Nerv. Syst. 42, 99–118 (1993).CrossRefPubMedGoogle Scholar
  4. 4.
    G.F. Alheid, P.A. Gray, M.C. Jiang, J.L. Feldman, D.R. McCrimmon, Parvalbumin in respiratory neurons of the ventrolateral medulla of the adult rat, J. Neurocytol. 31, 693–717 (2002).CrossRefPubMedGoogle Scholar
  5. 5.
    P.A. Gray, J.C. Rekling, C.M. Bocchiaro, J.L. Feldman, Modulation of Respiratory Frequency by Peptidergic Input to Rhythmogenic Neurons in the PreBötzinger Complex. Science 286, 1566–1568 (1999).CrossRefPubMedGoogle Scholar
  6. 6.
    P.A. Gray, W.A. Janczewski, N. Mellen, D.R. McCrimmon, J.L. Feldman, Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons, Nature Neurosci. 4, 927–930 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    Y.-Y. Liu, G. Ju, M.T.T. Wong-Riley, Distribution and colocalization of neurotransmitters and receptors in the pre-Bötzinger complex of rats, J.Appl. Physiol. 91, 1387–1395 (2001).PubMedGoogle Scholar
  8. 8.
    H. Wang, R.L. Stornetta, D.L. Rosin, P.G. Guyenet, Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat, J. Comp. Neurol. 434, 128–148 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    J.M. Makeham, A.K. Goodchild, P.M. Pilowsky, NK1 receptor and the ventral medulla of the rat: bulbospinal and catecholaminergic neurons, NeuwReport 12, 3663–3667 (2001).CrossRefGoogle Scholar
  10. 10.
    P.G. Guyenet, C.P. Sevigny, M.C. Weston, R.L. Stornetta, Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic, J. Neurosci. 22, 3806–3816(2002).PubMedGoogle Scholar
  11. 11.
    R.L. Stornetta, D.L. Rosin, H. Wang, C.P. Sevigny, M.C. Weston, P.G. Guyenet, A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Bötzinger complex, J. Comp. Neurol. 455, 499–512 (2003).CrossRefPubMedGoogle Scholar
  12. 12.
    R.L. Stornetta, C.P. Sevigny, P.G. Guyenet, Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes, J. Comp. Neurol. 455, 113–124 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    M.R. Celio, Calbindin D-28k and parvalbumin in the rat nervous system, Neurosci. 35, 375–475 (1990).CrossRefGoogle Scholar
  14. 14.
    G. Paxinos, L. Kus, K.W.S. Ashwell, C. Watson, Chemoarchitectonic Atlas of The Rat Forebrain. (Academic Press, San Diego, 1999).Google Scholar
  15. 15.
    G. Paxinos, P. Carrive, H. Wang, P.-Y. Wang, Chemoarchitectonic Atlas of the Rat Brainstem (Academic Press, San Diego, 1999).Google Scholar
  16. 16.
    M. Cox, G.M. Halliday, Parvalbumin as an anatomical marker for discrete subregions of the ambiguus complex in the rat, Neurosci. Lett. 160, 101–105 (1993).CrossRefPubMedGoogle Scholar
  17. 17.
    A. Monnier, G.F. Alheid, D.R. McCrimmon, Defining ventral medullary respiratory compartments with a glutamate receptor agonist in the rat, J. Physiol. (Lond.) 548, 859–874 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Lipski, X. Zhang, B. Kruszewska, R. Kanjhan, Morphological study of long axonal projections of ventral medullary inspiratory neurons in the rat, Brain Res. 640, 171–184 (1994).CrossRefPubMedGoogle Scholar
  19. 19.
    E.G. Dobbins, J.L. Feldman, Brainstem network controlling descending drive to phrenic motoneurons in rat, J. Comp. Neurol. 347, 64–86 (1994).CrossRefPubMedGoogle Scholar
  20. 20.
    H. Wang, T.P. Germanson, P.G. Guyenet, Depressor and tachypneic responses to chemical stimulation of the ventral respiratory group are reduced by ablation of neurokinin-1 receptor-expressing neurons, J. Neurosci. 22, 3755–3764 (2002).PubMedGoogle Scholar
  21. 21.
    J.L. Feldman, D.R. McCrimmon, D.F. Speck, Effect of synchronous activation of medullary inspiratory bulbo-spinal neurones on phrenic nerve discharge in cat, J. Physiol. (Lond.) 347, 241–254 (1984).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Donald R. McCrimmon
    • 1
  • George F. Alheid
    • 2
  • Minchun Jiang
    • 2
  • Tara Calandriello
    • 2
  • Anupama Topgi
    • 2
  1. 1.Dept. Physiology-M211Northwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Northwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations