Ventilatory Responsiveness to CO2 Above & Below Eupnea: Relative Importance of Peripheral Chemoreception

  • Curtis A. Smith
  • Bruno J. Chenuel
  • Hideaki Nakayama
  • Jerome A. Dempsey
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 551)


Sleep apnea is a highly prevalent problem occurring in the general working population at rates of 2–3% in children, 3–7% in middle-aged adults and 10–15% in the healthy elderly (>65 years old).1,2 While anatomical dimensions or mechanical properties of the upper airway are an important risk factor for sleep apnea, neural control over the magnitude and stability of respiratory motor output to both the upper airway and chest wall pump muscles has also emerged as a major contributor to all types of sleep apnea.3, 4, 5, 6, 7 Chemoreflexes are the most important determinant of respiratory drive during sleep. Given the rapidity with which hypopneas/apneas develop in a typical central and/or “mixed” apnea episode, our recent work has addressed the general hypothesis that carotid chemoreceptors have a dominant role in mediating ventilatory responses to transient increases and decreases in CO2 as commonly occurs in sleep-disordered breathing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328: 1230–1235 (1993).CrossRefPubMedGoogle Scholar
  2. 2.
    T. Young, P. E. Peppard, and D. J. Gottlieb. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165: 1217–1239 (2002).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Younes, M. Ostrowski, W. Thompson, C. Leslie, and W. Shewchuk. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Can Med 163: 1181–1190 (2001).Google Scholar
  4. 4.
    G. Warner, J. B. Skatrud, and J. A. Dempsey. Effect of hypoxia-induced periodic breathing on upper airway obstruction during sleep. J Appl Physiol 62: 2201–2211 (1987).PubMedGoogle Scholar
  5. 5.
    J. A. Dempsey, J. B. Skatrud, A. J. Jacques, S. J. Ewanowski, B. T. Woodson, P. R. Hanson, and B. Goodman. Anatomic determinants of sleep-disordered breathing across the spectrum of clinical and nonclinical male subjects. Chest 122: 1–13 (2002).CrossRefGoogle Scholar
  6. 6.
    M. S. Badr, F. Toiber, J. B. Skatrud, and J. Dempsey. Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol 78: 1806–1815 (1995).PubMedGoogle Scholar
  7. 7.
    M. Younes. Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med 168: 645–658 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    H. Nakayama, C. A. Smith, J. R. Rodman, J. B. Skatrud, and J. A. Dempsey. Effect of ventilatory drive on CO2 sensitivity below eupnea during sleep. Am J Respir Crit Care Med 165: 1251–1259 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    H. Nakayama, C. A. Smith, J. R. Rodman, J. B. Skatrud, and J. A. Dempsey. Carotid body denervation eliminates apnea in response to transient hypocapnia. J. Appl. Physiol. 94: 155–164 (2003).PubMedGoogle Scholar
  10. 10.
    C. A. Smith, K. W. Saupe, K. S. Henderson, and J. A. Dempsey. Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J Appl Physiol 79: 689–699 (1995).PubMedGoogle Scholar
  11. 11.
    C. A. Smith, C. A. Harms, K. S. Henderson, and J. A. Dempsey. Ventilatory effects of specific carotid body hypocapnia and hypoxia in awake dogs. J Appl Physiol 82: 791–798 (1997).PubMedGoogle Scholar
  12. 12.
    H. Ogawa, A. Mizusawa, Y. Kikuchi, W. Hida, H. Miki, and K. Shirato. Nitric oxide as a retrograde messenger in the nucleus tractus solitarii of rats during hypoxia. J. Physiol. 486: 495–504 (1995).PubMedGoogle Scholar
  13. 13.
    A. Liu, J. Kim, J. Cinotte, P. Homolka, and M. T. T. Wong-Riley. Carotid body denervation effect on cytochrome oxidase activity in pre-Botzinger complex of developing rats. J. Appl. Physiol. 94: 1115–1121 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    A. Serra, D. Brozoski, N. Hedin, R. Franciosi, and H. V. Forster. Mortality after carotid body denervation in rats. J Appl Physiol 91: 1298–1306 (2001).PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Curtis A. Smith
    • 1
  • Bruno J. Chenuel
    • 1
  • Hideaki Nakayama
    • 1
  • Jerome A. Dempsey
    • 1
  1. 1.The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health SciencesUniversity of Wisconsin School of MedicineMadisonUSA

Personalised recommendations