Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

Prolyl hydroxylase is an enzyme which oxidatively modifies the proline residue of hypoxia inducible factor (HIF-lα) in the presence of oxygen in an apparently irreversible reaction. This reaction also requires labile Fe2+, 2-oxogluterate (2-OG) and ascorbic acid. Hypoxia retards this reaction and HIF-1α is accumulated. Similarly, Fe2+ chelation mimics hypoxia-like effect. Thus, the enzyme stands at the gateway between hypoxia and normoxia. The hy-droxylated HIF-1α undergoes proteasomal degradation during normoxia whereas HIF-1α, accumulated during hypoxia, binds with β-subunits to form HIF-1 which is then transcripted to various genes in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baby SM, Roy A, Mokashi A and Lahiri S. Effects of hypoxia and intracellular iron chelation on hypoxia inducible factor-1α and-1β in the rat carotid body and glomus cells. Histochemistry and Cell Biology 120: 343–352, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bunn HF and Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–855, 1996.

    CAS  PubMed  Google Scholar 

  • Daudu PA, Roy A, Rozanov C, Mokashi A and Lahiri S. Extracellular and intracellular free iron and the carotid body responses. Respir Physiol & Neumbiol 130: 21–31, 2002.

    Article  CAS  Google Scholar 

  • Jewell UR, Kvietikova, Scheid A, Bauer C, Wenger RH and Gassman M. Induction of HIF1α in response to hypoxia is instantaneous. FASEB J 15: 1312–1314, 2001.

    CAS  PubMed  Google Scholar 

  • Maxwell PH and Ratcliffe PJ. Regulation of HIF-1α by oxygen. In Oxygen Sensing: Responses and Adaption to Hypoxia. Marcell Dekker, Inc. Vol. 475 Eds. Lahiri S, Semenza GL and Prabhakar NR. pp. 47–65, 2003.

    Google Scholar 

  • Lahiri S. Historical perspectives of cellular oxygen sensing and responses to hypoxia. J Appl Physiol 88: 1467–1473, 2000.

    CAS  PubMed  Google Scholar 

  • Lahiri S, Rozanov C, Roy A, Storey B and Buerk DG. Regulation of oxygen sensing in peripheral arterial chemoreceptors. IJBCB 33: 755–774, 2001.

    CAS  Google Scholar 

  • Ren X, Dorrington KL, Maxwell PH and Robbins PA. Effects of desferrioxamine on serum erythropoietin and ventrilatory sensitivity to hypoxia in humans. J Appl Physiol 89: 680–686, 2000.

    CAS  PubMed  Google Scholar 

  • Roy A, Buerk DG, Li J, Baby SM and Lahiri S. Intracellular iron chelation in carotid body chemotransduction. In Oxygen and Cell Symposium, Berlin, September 6–9, 2003.

    Google Scholar 

  • Roy A, Li J, Baby SM, Mokashi A, Buerk DG, Lahiri S. Effects of iron-chelators on ion-channels and HIF-lα expression in the carotid body. Respir Physiol Neurobiol (in press).

    Google Scholar 

  • Wang GL and Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268: 21513–21518, 1993.

    CAS  PubMed  Google Scholar 

  • Agani FH, pichiule P, Chavez JC and LaManna JC. Inhibitors of mitochondrial complex I attenuates the accumulation of hypoxia-inducible factor-1 during hypoxia in HEP3B cells. Comp. Biochem. Physiol. 132:107–109, 2002.

    Google Scholar 

  • Mulligan E, Lahiri S, Storey BT. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl. Physiol. 250: H202–207, 1981.

    Google Scholar 

  • Wyatt CN and Buckler KJ. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol. 556: 175–191, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Lahiri, S., Roy, A., Li, J., Baby, S.M., Mokashi, A., Di Giulio, C. (2004). Role of Fe2+ in Oxygen Sensing in the Carotid Body. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_10

Download citation

Publish with us

Policies and ethics