Skip to main content

Animal Models of OXPHOS Disorders

  • Chapter
  • 694 Accesses

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Dysfunction of the mitochondrial respiratory chain has been associated with a wide range of human diseases ranging from diabetes to cardiomyopathy. Mutations in a number of nuclear as well as mitochondrial genes have been implicated in causing these diseases. Several animal models have now been created which reproduce some of the clinical pathology observed in human patients suffering from OXPHOS disorders. In this chapter we review some of these animal models of OXPHOS disorders and how they have led to a further understanding of both mitochondrial respiratory chain function and dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larsson NG, Clayton D. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 1995;29:151–178.

    Article  PubMed  CAS  Google Scholar 

  2. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2:342–352.

    Article  PubMed  CAS  Google Scholar 

  3. Munnich A, Rustin P. Clinical spectrum and diagnosis of mitochondrial disorders. Am J Med Genet 2001;106:4–17.

    Article  PubMed  CAS  Google Scholar 

  4. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283:1482–1488.

    Article  PubMed  CAS  Google Scholar 

  5. Judd BH, Shen MW, Kaufman TC. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 1972;71:139–156.

    PubMed  CAS  Google Scholar 

  6. Shannon MP, Kaufman TC, Shen MW et al. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zest-white region of Drosophila melanogaster. Genetics 1972;72:615–638.

    PubMed  CAS  Google Scholar 

  7. Ganetzky B, Wu CF. Indirect suppression involving behavioural mutants with altered nerve excitability in Drosophila melanogaster. Genetics 1982;100:597–614.

    PubMed  Google Scholar 

  8. Royden CS, Pirrotta V, Jan LY. The tko locus, site of a behavioural mutation in Drosophila melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell 1987;51:165–173.

    Article  PubMed  CAS  Google Scholar 

  9. Shah ZH, O’Dell KMC, Miller SCM et al. Metazoan nuclear genes for mitoribosomal protein S12. Gene 1997;204:55–62.

    Article  PubMed  CAS  Google Scholar 

  10. Toivonen JM, O’Dell KMC, Petit N et al. technical knockout, a Drosophila model of mitochondrial deafness. Genetics 2001;159:241–254.

    PubMed  CAS  Google Scholar 

  11. Tiranti V, Hoertnagel K, Carrozzo R et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998;63:1609–1621.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu Z, Yao J, Johns T et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998;20:337–343.

    Article  PubMed  CAS  Google Scholar 

  13. Kaukonen J, Juselius JK, Tiranti V et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000;289:782–785.

    Article  PubMed  CAS  Google Scholar 

  14. Graham BH, Waymire KG, Cottrell B et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997;16:226–234.

    Article  PubMed  CAS  Google Scholar 

  15. Melov S, Hinerfeld D, Esposito L et al. Multi-organ characterisation of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nuc Acid Res 1997;25:974–82.

    Article  CAS  Google Scholar 

  16. Tanhauser SM, Laipis PJ. Multiple deletions are detectable in mitochondrial DNA of aging mice. J Biol Chem 1995;270:24769–75.

    Article  PubMed  CAS  Google Scholar 

  17. Esposito LA, Melov S, Panov A et al. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 1999;96:4820–4825.

    Article  PubMed  CAS  Google Scholar 

  18. Esposito LA, Kokoszka JE, Waymire KG et al. Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene. Free Radical Biology & Medicine 2000;28:754–766.

    Article  CAS  Google Scholar 

  19. Ho Ye-S, Magnenat J-L, Bronson RT et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 1997;272:16644–16651.

    Article  PubMed  CAS  Google Scholar 

  20. de Haan JB, Bladier C, Griffiths P et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 1998;273:22528–22536.

    Article  PubMed  Google Scholar 

  21. Li Y, Huang T-T, Carlson EJ et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11:376–381.

    Article  PubMed  CAS  Google Scholar 

  22. Reaume AG, Elliott JL, Hoffman EK et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996;13:43–47.

    Article  PubMed  CAS  Google Scholar 

  23. Carlsson LM, Jonsson J, Edlund T et al. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995;92:6264–6268.

    Article  PubMed  CAS  Google Scholar 

  24. Melov S, Coskun P, Patel M et al. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci 1999;91:12248–12252.

    Google Scholar 

  25. Gardner PR, Nguyen DD, White CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 1994;91:12248–12252.

    Article  PubMed  CAS  Google Scholar 

  26. Lebovitz RM, Zhang H, Vogel H et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 1996;93:9782–9787.

    Article  PubMed  CAS  Google Scholar 

  27. Melov S, Schneider JA, Day BJ et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998;18:159–163.

    Article  PubMed  CAS  Google Scholar 

  28. Melov S, Doctrow SR, Schneider JA et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. The Journal of Neuroscience 2001;21:8348–8353.

    PubMed  CAS  Google Scholar 

  29. Kokoszka JE, Coskun P, Esposito LA et al. Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 2001;98:2278–2283.

    Article  PubMed  CAS  Google Scholar 

  30. Petronilli V, Costantini P, Scorrano L et al. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 1994;269:16638–16642.

    PubMed  CAS  Google Scholar 

  31. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139–176.

    PubMed  Google Scholar 

  32. Larsson NG, Wang J, Wilhelmsson H et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998;18:231–236.

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Wilhelmsson H, Graff C et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999;21:133–137.

    Article  PubMed  CAS  Google Scholar 

  34. Li H, Wang J, Wilhelmsson H et al. Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci 2000;97:3467–3472.

    Article  PubMed  CAS  Google Scholar 

  35. Silva JP, Köhler M, Graff C et al. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochodnrial diabetes. Nat Genet 2000;26:336–340.

    Article  PubMed  CAS  Google Scholar 

  36. Sörensen L, Ekstrand M, Silva JP et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 2001;21:8082–8090.

    PubMed  Google Scholar 

  37. Koutnikova H, Campuzano V, Foury F et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 1997;16:345–351.

    Article  PubMed  CAS  Google Scholar 

  38. Jiralerspong S, Liu Y, Montermini L et al. Frataxin shows developmentally regulated tissue-specific expression in the mouse embryo. Neurobiol Dis 1997;4:103–113.

    Article  PubMed  CAS  Google Scholar 

  39. Rötig A, deLonlay P, Chretien D et al. Frataxin gene expansion causes aconitase and mitochondrial iron-sulfur protein deficiency in Friedreich ataxia. Nat Genet 1997;17:215–217.

    Article  PubMed  Google Scholar 

  40. Cossée M, Puccio H, Gansmuller A et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 2000;9:1219–1226.

    Article  PubMed  Google Scholar 

  41. Puccio H, Simon D, Cossée M et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 2001;27:181–186.

    Article  PubMed  CAS  Google Scholar 

  42. Jenuth JP, Peterson AC, Fu K et al. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996;14:146–151.

    Article  PubMed  CAS  Google Scholar 

  43. Sligh JE, Levy SE, Waymire KG et al. Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci 2000;97:14461–14466.

    Article  PubMed  CAS  Google Scholar 

  44. Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987;123:364–374.

    Article  PubMed  CAS  Google Scholar 

  45. Handyside AH, Hunter S. A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotidespecific flourochromes. J Exp Zool 1984;231:429–434.

    Article  PubMed  CAS  Google Scholar 

  46. Jenuth JP, Peterson AC, Shoubridge EA. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 1997;16:93–95.

    Article  PubMed  CAS  Google Scholar 

  47. Battersby BJ, Shoubridge EA. Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum Mol Genet 2001;10:2469–2479.

    Article  PubMed  CAS  Google Scholar 

  48. Marchington DR, Barlow D, Poulton J. Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: Developing the first mouse model of mitochondrial DNA disease. Nat Med 1999;5:957–60.

    Article  PubMed  CAS  Google Scholar 

  49. Levy SE, Waymire KG, Kim YL et al. Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res 1999;8:137–45.

    Article  PubMed  CAS  Google Scholar 

  50. Inoue K, Nakada K, Ogura A et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 2000;26:176–181.

    Article  PubMed  CAS  Google Scholar 

  51. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283:1482–1488.

    Article  PubMed  CAS  Google Scholar 

  52. Larsson NG, Eiken HG, Boman H et al. Lack of transmission of deleted mtDNA from a woman with Kerns-Sayre syndrome to her child. Hum Genet 1992;50:360–363.

    CAS  Google Scholar 

  53. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717–719.

    Article  PubMed  CAS  Google Scholar 

  54. Rotig A, Bessis JL, Romero N et al. Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes mellitus, and cerebellar ataxia. Am J Hum Genet 1992;50:364–370.

    PubMed  CAS  Google Scholar 

  55. Jansen JJ, Maassen JA, van der Woude FJ et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J Am Soc Nephrol 1997;8:1118–1124.

    PubMed  CAS  Google Scholar 

  56. Szabolcs MJ, Seigle R, Shanske S et al. Mitochondrial DNA deletion: A cause of chronic tubulointerstitial nephropathy. Kidney Int 1994;45:1388–1396.

    PubMed  CAS  Google Scholar 

  57. Nakada K, Inoue K, Ono T et al. Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 2001;7:934–940.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng QY, Johnson KR, Erway LC. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Res 1999;130:94–107.

    Article  CAS  Google Scholar 

  59. Johnson KR, Zheng QY, Bykhovskaya Y et al. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 2001;27:191–194.

    Article  PubMed  CAS  Google Scholar 

  60. Fischel-Ghodsian N, Bykhovskaya Y, Taylor K et al. Temporal bone analysis of patients with presbycusis bycusis reveals high frequency of mitochondrial mutations. Hearing Res 1997;110:147–154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Hance, N., Larsson, NG. (2004). Animal Models of OXPHOS Disorders. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics