Skip to main content

Cell Biological Consequences of OXPHOS Disorders

  • Chapter
Oxidative Phosphorylation in Health and Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 709 Accesses

Abstract

During the past century mitochondria have been recognized to play a central role in many cellular functions. Apart from producing cellular energy in the form of ATP (adenosine 5′-triphosphate) this organelle harbors essential parts of the urea cycle and is crucial for the breakdown of fatty acids, heat generation and the biosynthesis of heme, pyrimidines, amino acids, phospholipids and nucleotides. In addition to these ‘classical’ functions, mitochondria are also key players in cellular signaling through their involvement in apoptosis, generation of reactive nitrogen- and oxygen species (ROS/RNS), transduction of electrical signals and calcium homeostasis. This chapter summarizes current insights concerning the consequences of oxidative phosphorylation (OXPHOS) dysfunction at the cellular level. We will start with illustrating how mitochondrial and cellular metabolism is intertwined during ATP generation, calcium transport and ROS production. Moreover, the relation between mitochondrial morphology and function will be addressed. Next, we will summarize how OXPHOS deficiency and cellular functioning have been analyzed using pharmacological model systems and patient-derived cell lines. Also results of mathematical modeling, applied to integrate and understand the complex experimental data, will be treated. Finally, we will discuss possible adaptive mechanisms that counterbalance OXPHOS deficiency in the living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gunter TE, Gunter KK, Sheu S-S et al. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 1994; 267:C313–C339.

    PubMed  CAS  Google Scholar 

  2. Gunter TE, Buntinas L, Sparagna GC et al. The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim Biophys Acta 1998; 1366:5–15.

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi, P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 1999; 79:1127–1155.

    PubMed  CAS  Google Scholar 

  4. St-Pierre J, Brand MD, Boutilier RG. Mitochondria as ATP consumers: cellular treason in anoxia. Proc Natl Acad Sci USA 2000; 97:8670–8674.

    Article  PubMed  CAS  Google Scholar 

  5. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341:233–49.

    Article  PubMed  CAS  Google Scholar 

  6. Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 1999; 18:6349–6361.

    Article  PubMed  CAS  Google Scholar 

  7. Korge P, Honda HM, Weiss JN. Regulation of the mitochondrial permeability transition by matrix Ca2+ and voltage during anoxia/reoxygenation. Am J Physiol Cell Physiol 2001; 280:C517–C526.

    PubMed  CAS  Google Scholar 

  8. Schlattner U, Dolder M, Wallimann T et al. Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium. J Biol Chem 2001; 276:48027–48030.

    PubMed  CAS  Google Scholar 

  9. Fontaine E, Bernardi P. Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 1999; 31:335–345.

    Article  PubMed  CAS  Google Scholar 

  10. Hüser J, Blatter LA, Fluctuations in mitochondrial membrane potentiasl caused by repetitive gating of the permeability transition pore. Biochem J 1999; 343:311–317.

    Article  PubMed  Google Scholar 

  11. Schon EA, Gene products present in mitochondria of yeast and animal cells. In: Meth in Cell Biol 2001; 65, Mitochondria, eds. Pon LA, Schon EA, Academic Press, NY.

    Google Scholar 

  12. Voos W, Martin H, Krimmer T et al. Mechanisms of protein translocation into mitochondria. Biochim Biophys Acta 1999; 1422:235–254.

    PubMed  CAS  Google Scholar 

  13. Herrmann JM, Neupert W. What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. Biochim Biophys Acta 2000; 1459:331–338.

    Article  PubMed  CAS  Google Scholar 

  14. Hebert DN. Protein unfolding: Mitochondria offer a helping hand. Nat Struct Biol 1999; 6:1084–1085.

    Article  PubMed  CAS  Google Scholar 

  15. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  16. Berridge MJ. Calcium signalling and cell proliferation. BioEssays 1995; 17:491–499

    Article  PubMed  CAS  Google Scholar 

  17. Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature 1998; 395:645–648.

    Article  PubMed  CAS  Google Scholar 

  18. da Silva CP, Guse AH. Intracellullar Ca2+ release mechanisms: multiple pathways having multiple functions within the same cell type? Biochim Biophys Acta 2000; 1498:122–133.

    Article  PubMed  Google Scholar 

  19. Lieste JR, Koopman WJ, Reynen VC et al. Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell. J Biol Chem 1998; 273:25686–25694.

    Article  PubMed  CAS  Google Scholar 

  20. Clapham DE. Calcium Signalling. Cell 1995; 80:259–268.

    Article  PubMed  CAS  Google Scholar 

  21. Bootman MD, Berridge MJ. The elemental principles of calcium signalling. Cell 1995; 83:675–678.

    Article  PubMed  CAS  Google Scholar 

  22. Putney Jr. JW, McKay RR. Capacitative calcium entry channels. BioEssays 1999; 21:38–46.

    Article  PubMed  Google Scholar 

  23. Corbett EF, Michalak M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends Bioch Sci 2000;25:307–311.

    Article  CAS  Google Scholar 

  24. Pinton P, Ferrari D, Rapizzi E et al. A role for calcium in Bcl-2 action? Biochimi 2002; 84:195–201.

    Article  CAS  Google Scholar 

  25. Wileman T, Kane LP, Carson GR et al. Depletion of cellular calcium accelerates protein degradation in the endoplasmic reticulum. J Biol Chem 1991; 266:4500–4507.

    PubMed  CAS  Google Scholar 

  26. Rogue PJ, Malviya AN. Calcium signals in the cell nucleus. EMBO J 2000; 18:5147–5152.

    Article  Google Scholar 

  27. Nicotera P, Zhivotovsky B, Orrenius S. Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 1994; 16:279–288.

    Article  PubMed  CAS  Google Scholar 

  28. Pozzan T, Rizzuto R. The renaissance of mitochondrial calcium transport. Eur J Biochem 2000; 267:5269–5273.

    Article  PubMed  CAS  Google Scholar 

  29. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 1990; 258:C755–86.

    PubMed  CAS  Google Scholar 

  30. Robb-Gaspers LD, Rutter GA, Burnett P et al. Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta 1998; 1366:17–32.

    Article  PubMed  CAS  Google Scholar 

  31. Pinton P, Ferrari D, Rapizzi E et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001; 20:2690–2701.

    Article  PubMed  CAS  Google Scholar 

  32. Rizzuto R, Simpson AW, Brini M et al. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 1992; 358:325–327.

    Article  PubMed  CAS  Google Scholar 

  33. Rizzuto R, Brini M, Murgia M et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 1993; 262:744–747.

    Article  PubMed  CAS  Google Scholar 

  34. Rizzuto R, Bastianutto C, Brini M et al. Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 1994; 126:1183–1194.

    Article  PubMed  CAS  Google Scholar 

  35. Rizzuto R, Pinton P, Carrington W et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998; 280:1763–1766.

    Article  PubMed  CAS  Google Scholar 

  36. Pacher P, Thomas AP, Hajnoczky G. Ca2+ marks: Miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci USA 2002; 99:2380–2385.

    Article  PubMed  CAS  Google Scholar 

  37. Robb-Gaspers LD, Burnett P, Rutter GA et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 1998; 17:4987–5000.

    Article  PubMed  CAS  Google Scholar 

  38. Pinton P, Brini M, Bastianutto C et al. New light on mitochondrial calcium. Biofactors 1998; 8:243–253.

    PubMed  CAS  Google Scholar 

  39. Territo PR, French SA, Dunleavy MC et al. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 2001; 276:2586–2599.

    Article  PubMed  CAS  Google Scholar 

  40. Hajnoczky G, Robb-Gaspers LD, Seitz MB et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995; 82:415–424.

    Article  PubMed  CAS  Google Scholar 

  41. Jouaville LS, Pinton P, Bastianutto C et al. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 1999; 96:13807–13812.

    Article  PubMed  CAS  Google Scholar 

  42. Babcock DF, Herrington J, Goodwin PC et al. Mitochondrial participation in the ‘intracellular Ca2+ network. J Cell Biol 1997; 136:833–844.

    Article  PubMed  CAS  Google Scholar 

  43. Rizzuto R, Pinton P, Brini M et al. Mitochondria as biosensors of calcium microdomains. Cell calcium 1999;26:193–199.

    Article  PubMed  CAS  Google Scholar 

  44. Grubelnik V, Larsen AZ, Kummer U et al. Mitochondria regulate the amplitude of simple and complex calcium oscillations. Biophys Chem 2001; 94:59–74.

    Article  PubMed  CAS  Google Scholar 

  45. Falcke M, Hudson JL, Camacho P et al. Impact of mitochondrial Ca2+ cycling on pattern formation and stability. Biophys J 1999; 77:37–44.

    PubMed  CAS  Google Scholar 

  46. Kaftan EJ, Xu T, Abercrombie RF et al. Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis. J Biol Chem 2000; 275:25465–25470.

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez-Guijo JM, Maneu-Flores VE, Ruiz-Nuno A et al. Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffln cells: role of mitochondria. J Neurosci 2001; 21:2553–2560.

    PubMed  CAS  Google Scholar 

  48. Vanden Berghe P, Kenyon JL, Smith TK. Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons. J Neurosci 2002; 22:6962–6971.

    Google Scholar 

  49. Boveris A, Chance BA. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973; 134:707–716.

    PubMed  CAS  Google Scholar 

  50. Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiol Rev 2002; 82:47–95.

    PubMed  Google Scholar 

  51. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001; 173–186.

    Google Scholar 

  52. Robinson BH. Human cytochrome oxidase deficiency. Pediatr Res 2000; 48:581–585.

    PubMed  CAS  Google Scholar 

  53. Raha S, Myint AT, Johnstone L et al. Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic Biol Med 2002; 32:421–430.

    Article  PubMed  CAS  Google Scholar 

  54. Staniek K, Nohl H. Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 2000; 1460:268–275.

    Article  PubMed  CAS  Google Scholar 

  55. Grune T, Blasig IE, Sitte N et al. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998; 273:10857–10862.

    Article  PubMed  CAS  Google Scholar 

  56. Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 2001; 276:23357–23361.

    Article  PubMed  CAS  Google Scholar 

  57. Vander Heiden MG, Thompson CB. Bcl-2 proteins: Regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1:E209–E216.

    Article  Google Scholar 

  58. Walter PB, Knutson MD, Paler-Martinez A et al. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Nad Acad Sci USA 2002; 99:2264–2269.

    Article  CAS  Google Scholar 

  59. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000; 29:222–230.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295:1895–1897.

    PubMed  CAS  Google Scholar 

  61. Jakob U, Muse W, Eser M et al. Chaperone activity with a redox switch. Cell 1999; 96:341–352.

    Article  PubMed  CAS  Google Scholar 

  62. Åslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 1999; 96:751–753.

    Article  PubMed  Google Scholar 

  63. Pomposiello PJ, Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Tr Biotech 2001; 19:109–114.

    Article  CAS  Google Scholar 

  64. Christman JW, Blackwell TS, Juurlink BH. Redox regulation of nuclear factor kappa B: therapeutic potential for attenuating inflammatory responses. Brain Pathol 2000; 10:153–62.

    Article  PubMed  CAS  Google Scholar 

  65. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999; 342:481–496.

    Article  PubMed  CAS  Google Scholar 

  66. Blanchetot C, Tertoolen LG, den Hertog J. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J 2002; 21:493–503.

    Article  PubMed  CAS  Google Scholar 

  67. Echtay KS, Roussel D, St-Pierre J et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415:96–99.

    Article  PubMed  CAS  Google Scholar 

  68. Paxinou E, Weisse M, Chen Q et al. Dynamic regulation of metabolism and respiration by endogenously produced nitric oxide protects against oxidative stress. Proc Natl Acad Sci USA 2001; 98:11575–11580.

    Article  PubMed  CAS  Google Scholar 

  69. Cooper CE, Patel RP, Brookes PS et al. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci 2002;27:489–92.

    Article  PubMed  CAS  Google Scholar 

  70. Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell death. Mol Immun 2002; 38:713–721.

    Article  CAS  Google Scholar 

  71. Missiaen L, Taylor CW, Berridge MJ. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 1991; 352:241–244.

    Article  PubMed  CAS  Google Scholar 

  72. Jacobson J, Duchen MR. ‘What nourishes me, destroys me’: towards a new mitochondrial biology. Cell Death Differ 2001; 8:963–966.

    Article  PubMed  CAS  Google Scholar 

  73. Jornot L, Maechler P, Wollheim CB et al. Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells: implication of the Ca2+/Na+ exchanger. J Cell Sci 1999; 112:1013–1022.

    PubMed  CAS  Google Scholar 

  74. Scheffler IE. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2000; 1:3–31.

    Article  Google Scholar 

  75. Chen LB, Summerhayes IC, Johnson LV et al. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 1982; 46:141–55.

    PubMed  Google Scholar 

  76. Yaffe MP. Dynamic mitochondria. Nat Cell Biol 1999; 1:E149–E150.

    Article  PubMed  CAS  Google Scholar 

  77. Capaldi RA. The changing face of mitochondrial research. Trends Biochem Sci 2000; 25:212–214.

    Article  PubMed  CAS  Google Scholar 

  78. Dzeja PP, Bortolon R, Perez-Terzic C et al. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 2002; 99:10156–61.

    Article  PubMed  CAS  Google Scholar 

  79. Luzikov VN. Quality control: from molecules to organelles. FEBS Lett 1999; 448:201–205.

    Article  PubMed  CAS  Google Scholar 

  80. Mancini M, Anderson BO, Caldwell E et al. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 1997; 138:449–469.

    Article  PubMed  CAS  Google Scholar 

  81. Camilleri-Broet S, Vanderwerff H, Caldwell E et al. Distinct alterations in mitochondrial mass and function characterize different models of apoptosis. Exp Cell Res 1998; 239:277–292.

    Article  PubMed  CAS  Google Scholar 

  82. Karbowski M, Spodnik JH, Teranishi M et al. Opposite effects of microtubule-stabilizing and microtubule-destabilizing drugs on biogenesis of mitochondria in mammalian cells. J Cell Sci 2001; 114:281–291.

    PubMed  CAS  Google Scholar 

  83. Hood DA. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90:1137–1157.

    PubMed  CAS  Google Scholar 

  84. Ichas F, Jouaville LS, Mazat JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 1997; 89:1145–1153.

    Article  PubMed  CAS  Google Scholar 

  85. Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Tr Biochem Sci 2001; 26:23–29.

    Article  CAS  Google Scholar 

  86. Park MK, Ashby MC, Erdemli G et al. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 2001; 20:1863–1874.

    Article  PubMed  CAS  Google Scholar 

  87. Collins TJ, Berridge MJ, Lipp P et al. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 2002; 21:1616–1627.

    Article  PubMed  CAS  Google Scholar 

  88. Nunnari J, Marshall WF, Straight A et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 1997; 8:1233–1242.

    PubMed  CAS  Google Scholar 

  89. Bleazard W, McCaffery JM, King EJ et al. The dynamin-related GTPase Dnml regulates mitochondrial fission in yeast. Nat Cell Biol 1999; 1:298–304.

    Article  PubMed  CAS  Google Scholar 

  90. Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 1999; 147:699–706.

    Article  PubMed  CAS  Google Scholar 

  91. Samel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 2001; 114:867–874.

    Google Scholar 

  92. Westermann B. Merging mitochondria matters: cellular role and molecular machinery of mitochondrial fusion. EMBO Rep 2002; 3:527–531.

    Article  PubMed  CAS  Google Scholar 

  93. Ono T, Isobe K, Nakada K et al. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 2001; 28:272–275.

    Article  PubMed  CAS  Google Scholar 

  94. Takai D, Inoue K, Goto Y et al. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem 1997; 272:6028–6033.

    Article  PubMed  CAS  Google Scholar 

  95. Enriquez JA, Cabezas-Herrera J, Bayona-Bafaluy MP et al. Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem 2000; 275:11207–11215.

    Article  PubMed  CAS  Google Scholar 

  96. Smirnova E, Shurland DL, Ryazantsev SN et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 1998; 143:351–358.

    Article  PubMed  CAS  Google Scholar 

  97. Labrousse AM, Zappaterra MD, Rube DA et al. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 1999; 4:815–826.

    Article  PubMed  CAS  Google Scholar 

  98. Fekkes P, Shepard KA, Yaffe MP. Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J Cell Biol 2000; 151:333–340.

    Article  PubMed  CAS  Google Scholar 

  99. Mozdy AD, McCaffery JM, Shaw JM. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 2000; 151:367–380.

    Article  PubMed  CAS  Google Scholar 

  100. Tieu Q, Nunnari J. Mdvlp is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 2000; 151:353–366.

    Article  PubMed  CAS  Google Scholar 

  101. Van der Bliek AM. A mitochondrial division apparatus takes shape. J Cell Biol 2000; 151:F1–F4.

    Article  PubMed  Google Scholar 

  102. Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26:207–210.

    Article  PubMed  CAS  Google Scholar 

  103. Smirnova E, Griparic L, Shurland DL et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001; 12:2245–2256.

    PubMed  CAS  Google Scholar 

  104. Rojo M, Legros F, Chateau D et al. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 2002; 115:1663–1674.

    PubMed  CAS  Google Scholar 

  105. Reichert AS, Neupert W. Contact sites between the outer and inner membrane of mitochondria-role in protein transport. Biochim Biophys Acta 2002; 1592:41–49.

    Article  PubMed  CAS  Google Scholar 

  106. Donzeau M, Kaldi K, Adam A et al. Tim23 links the inner and outer mitochondrial membranes. Cell 2000; 101(4):401–412.

    Article  PubMed  CAS  Google Scholar 

  107. Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 2000; 19:1777–1783.

    Article  PubMed  Google Scholar 

  108. Scalettar BA, Abney JR, Hackenbrock CR. Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci USA 1991; 88:8057–8061.

    Article  PubMed  CAS  Google Scholar 

  109. Kawai A, Nishikawa S, Hirata A et al. Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells. J Cell Sci 2001; 114:3565–3574.

    PubMed  CAS  Google Scholar 

  110. Paumard P, Vaillier J, Coulary B et al. The ATP synthase is involved I generating mitochondrial cristae morphology. EMBO J 2002; 21:221–300.

    Article  PubMed  CAS  Google Scholar 

  111. Arnould TS, Vankoningsloo S, Renard P et al. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 2002; 21:53–63.

    Article  PubMed  CAS  Google Scholar 

  112. Biswas G, Adebanjo OA, Freedman BD et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk. EMBO J 1999; 18:522–533.

    Article  PubMed  CAS  Google Scholar 

  113. Luo Y, Bond JD, Ingram VM. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc Natl Acad Sci USA 1997; 94:9705–9710.

    Article  PubMed  CAS  Google Scholar 

  114. de Hingh YC, Meyer J, Fischer JC et al. Direct measurement of lipid peroxidation in submitochondrial particles. Biochemistry 1995; 34:12755–60.

    Article  PubMed  Google Scholar 

  115. Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 1999; 274:16188–16197.

    Article  PubMed  CAS  Google Scholar 

  116. Cassarino DS, Halvorsen EM, Swerdlow RH et al. Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease. J Neurochem 2000 74:1384–92.

    Article  PubMed  CAS  Google Scholar 

  117. Grivennikova VG, Kapustin AN, Vinogradov AD. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. Evidence for the slow active/inactive transition. J Biol Chem 2001; 276:9038–9044.

    Article  PubMed  CAS  Google Scholar 

  118. Sherer TB, Trimmer PA, Borland K et al. Chronic reduction in complex I function alters calcium signaling in SH-SY5Y neuroblastoma cells. Brain Res 2001; 891:94–105.

    Article  PubMed  CAS  Google Scholar 

  119. King TD, Bijur GN, Jope RS. Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res 2001; 919(1):106–114.

    Article  PubMed  CAS  Google Scholar 

  120. Tomassini B, Testi R. Mitochondria as sensors of sphingolipids. Biochimie 2002; 84:123–129.

    Article  PubMed  CAS  Google Scholar 

  121. Adams JM, Cory S. Life-or-death decisions by the Bd-2 protein family. Trends Biochem Sci 2001; 26:61–66.

    Article  PubMed  CAS  Google Scholar 

  122. Zhu L, Ling S, Yu XD et al. Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2. J Biol Chem 1999; 274:33267–33273.

    Article  PubMed  CAS  Google Scholar 

  123. Pacher P, Hajnoczky G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J 2001; 20:4107–4121.

    Article  PubMed  CAS  Google Scholar 

  124. Fearnley IM, Carroll J, Shannon RJ et al. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 2001; 276:38345–38348.

    Article  PubMed  CAS  Google Scholar 

  125. Tolkovsky AM, Xue L, Fletcher GC et al. Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 2002; 84:233–240.

    Article  PubMed  CAS  Google Scholar 

  126. Skulachev VP. The programmed death phenomena, aging, and the Samurai law of biology. Exp Gerontol 2001; 36:995–1024.

    Article  PubMed  CAS  Google Scholar 

  127. Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 1996; 65:563–607.

    Article  PubMed  CAS  Google Scholar 

  128. Mitsumoto A, Takeuchi A, Okawa K et al. A subset of newly synthesized polypeptides in mitochondria from human endothelial cells exposed to hydroperoxide stress. Free Radic Biol Med 2002; 32:22–37.

    Article  PubMed  CAS  Google Scholar 

  129. Orino K, Lehman L, Tsuji Y et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357:241–247.

    Article  PubMed  CAS  Google Scholar 

  130. Raza H, Robin MA, Fang JK et al. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 2002; 366:45–55.

    PubMed  CAS  Google Scholar 

  131. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879–97.

    Article  PubMed  CAS  Google Scholar 

  132. Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 2002; 64:765–770.

    Article  PubMed  CAS  Google Scholar 

  133. Margineantu D, Capaldi RA, Marcus AH. Dynamics of the mitochondrial reticulum in live cells using Fourier imaging correlation spectroscopy and digital video microscopy. Biophys J 2000; 79:1833–1849.

    Article  PubMed  CAS  Google Scholar 

  134. Gilkerson RW, Margineantu DH, Capaldi RA et al. Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS Lett 2000; 474:1–4.

    Article  PubMed  CAS  Google Scholar 

  135. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nature Rev Genet 2001; 2:342–352.

    Article  CAS  PubMed  Google Scholar 

  136. Brini M, Pinton P, King MP et al. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 1999; 58:951–954.

    Google Scholar 

  137. Moudy AN, Handran SD, Goldberg MP et al. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci USA 1995; 99:729–733.

    Article  Google Scholar 

  138. Wasniewska M, Karczmarewicz E, Pronicki M et al. Abnormal calcium homeostatis in fibroblasts from patients with Leigh disease. Bioch Biophys Res Com 2001; 283:687–693.

    Article  CAS  Google Scholar 

  139. Pitkänen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996; 98:345–351.

    Article  PubMed  Google Scholar 

  140. Grigorieff N. Structure of the respiratory NADH: ubiquinone oxidoreductase (complex I) Curr Opin Struct Biol 1999; 9:476–483.

    Article  PubMed  CAS  Google Scholar 

  141. Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. Am J Physiol 1998; 274:C1158–C1173.

    PubMed  CAS  Google Scholar 

  142. Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am J Physiol 1998; 274:C1174–C1184.

    PubMed  CAS  Google Scholar 

  143. Vendelin M, Kongas O, Saks V. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol 2000; 278:C747–C764.

    PubMed  CAS  Google Scholar 

  144. Korzeniewski B, Zoladz JA. A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys Chem 2001; 92;17–34.

    Article  PubMed  CAS  Google Scholar 

  145. Korzeniewski B. Parallel activation in the ATP supply-demand system lessens the effects of enzyme deficiencies, inhibitors, poisons and substrate shortage on oxidative phosphorylation. Biophys Chem 2002; 96:21–31.

    Article  PubMed  CAS  Google Scholar 

  146. Kaczer H, Burns JA. The control of flux. Symp Soc Exp Biol 1973; 32:65–104.

    Google Scholar 

  147. Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 1974; 42:89–95.

    Article  PubMed  CAS  Google Scholar 

  148. Redcr C. Metabolic control theory. J Theor Biol 1988; 135:175–201.

    Article  Google Scholar 

  149. Letellicr T, Malgat M, Mazat JP. Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta 1993; 1141:58–64.

    Article  Google Scholar 

  150. Rossignol R, Letellier T, Malgat M et al. Tissue variation in the control of oxidative phosphorylation: Implication for mitochondrial diseases. Biochem J 2000; 347:45–53.

    Article  PubMed  CAS  Google Scholar 

  151. Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 1998; 273:12753–12757.

    Article  PubMed  CAS  Google Scholar 

  152. Kim S, Lee W, Kweon S et al. Regulation of reactive oxygen species and stress fiber formation by calpeptin in Swiss 3T3 fibroblasts. Cell Signal 2002; 14;205–201.

    Article  PubMed  CAS  Google Scholar 

  153. Garesse R, Vallejo CG. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 2001; 263:1–16.

    Article  PubMed  CAS  Google Scholar 

  154. Heddi A, Stepien G, Benke PJ et al. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 1999; 274:22968–22976.

    Article  PubMed  CAS  Google Scholar 

  155. Murdock DG, Boone BE, Esposito LA et al. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J Biol Chem 1999; 274:14429–14433.

    Article  PubMed  CAS  Google Scholar 

  156. Donahue RJ, Razmara M, Hoek JB et al. Direct influence of the p53 tumor suppressor on mitochondrial biogenesis and function. FASEB J 2001; 15:635–644.

    Article  PubMed  CAS  Google Scholar 

  157. Zhao Q, Wang J, Levichkin IV et al. A mitochondrial specific stress response in mammalian cells. EMBO J 2002; 21:4411–4419.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Koopman, W.J.H., Visch, HJ., Verkaart, S., Willems, P.H.G.M. (2004). Cell Biological Consequences of OXPHOS Disorders. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics