Skip to main content

Nuclear DNA and Oxidative Phosphorylation

  • Chapter
Oxidative Phosphorylation in Health and Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 711 Accesses

Summary

The ubiquitous nature of mitochondria, the dual genetic foundation of the OXPHOS system in mitochondrial and nuclear genome, and the peculiar rules of mitochondrial genetics all contribute to the extraordinary heterogeneity of clinical disorders associated with defects of oxidative phosphorylation (mitochondrial encephalomyopathies). Here, we review recent findings about nuclear gene defects in OXPHOS enzyme complex deficiency. This information should help in identifying patients with mitochondrial disease and defining a biochemical and molecular basis of the disorder found in each patient. This knowledge is indispensable for accurate genetic counseling and prenatal diagnosis, and is a prerequisite for the development of rational therapies, which are still, at present, woefully inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiMauro S, Bonilla E, De Vivo DC. Does the patient have a mitochondrial encephalomyopathy? J Child Neurol 1999; 14:S23–S35.

    PubMed  Google Scholar 

  2. Loeffen JL, Smeitink JA, Trijbels JM et al. Isolated complex I deficiency in children: Clinical, biochemical and genetic aspects. Hum Mutat 2000; 15:123–134.

    Article  PubMed  CAS  Google Scholar 

  3. Chinnery PF, Turnbull DM. Mitochondrial DNA and disease. Lancet 1999; 354(suppl 1):S117–S121.

    Google Scholar 

  4. Schapira AH. Inborn and induced defects of mitochondria. Arch Neurol 1998; 55:1293–1296.

    Article  PubMed  CAS  Google Scholar 

  5. Trijbels JM, Sengers RC, Ruitenbeek W et al. Disorders of the mitochondrial respiratory chain: Clinical manifestation and diagnostic approach. Eur J Biochem 1988; 148:92–97.

    CAS  Google Scholar 

  6. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61:1175–1212.

    Article  PubMed  CAS  Google Scholar 

  7. Zeviani M, Tiranti V, Piantadosl C. Mitochondrial disorders. Medicine (Baltimore) 1998; 77:59–72.

    Article  PubMed  CAS  Google Scholar 

  8. Smeitink J, Van den Heuvel L, DiMauro S. The genetics and pathology of the oxidative phosphorrylation. Nature Rev Genet 2001; 2:342–352.

    Article  CAS  PubMed  Google Scholar 

  9. Ruitenbeek W, Wendel U, Hamel BC et al. Genetic counselling and prenatal diagnosis in disorders of the mitochondrial energy metabolism. J Inherit Metab Dis 1996; 19:581–587.

    Article  PubMed  CAS  Google Scholar 

  10. Trijbels JMF, Scholte HR, Ruitenbeek W et al. Problems with the biochemical diagnosis in mitochondrial (encephalo-)myopathies. Eur J Pediatr 1993; 152:178–184.

    Article  PubMed  CAS  Google Scholar 

  11. Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiat 1951; 14:216–221.

    Article  PubMed  CAS  Google Scholar 

  12. Rahman S, Blok RB, Dahl HH et al. Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Ann Neurol 1996; 39:343–351.

    Article  PubMed  CAS  Google Scholar 

  13. Bourgeron T, Rustin P, Chretien D et al. Mutation in a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet 1995; 11:144–148.

    Article  PubMed  CAS  Google Scholar 

  14. Parfait B, Chretien D, Rotig A et al. Compound heterozygous mutations of the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000; 108:236–243.

    Article  Google Scholar 

  15. Baysal BE. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287:848–851.

    Article  PubMed  CAS  Google Scholar 

  16. Niemann S, Müller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet 2000; 26:268–270.

    Article  PubMed  CAS  Google Scholar 

  17. Benn DE, Croxson MS, Tucker K et al. Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaechromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaechromocytomas. Oncogene 2003; 22:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  18. Van den Heuvel LP, Ruitenbeek W, Smeets R et al. Demonstration of a new pathogenic mutation in human complex I deficiency: A 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 1998; 62:262–268.

    Article  PubMed  Google Scholar 

  19. Papa S, Scacco S, Sardanelli AM et al. The NDUFS4 gene of complex I abolished cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 2001; 489:259–262.

    Article  PubMed  CAS  Google Scholar 

  20. Triepels R, Van den Heuvel LP, Loeffen J et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 1999; 45:787–790.

    Article  PubMed  CAS  Google Scholar 

  21. Loeffen J, Smeitink J, Triepels R et al. The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet 1999; 63:1598–1608.

    Article  Google Scholar 

  22. Schuelke M, Smeitink J, Mariman E et al. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nature Genet 1999; 21:260–461.

    Article  PubMed  CAS  Google Scholar 

  23. Triepels R, Smeitink J, Loeffen J et al. Characterization ol the human complex I NDUFB7 and 17.2 kDa cDNAs and mutational analysis of 19 genes of the HP fraction in complex I deficient patients. Hum Genet 2000; 106:385–391.

    Article  PubMed  CAS  Google Scholar 

  24. Smeitink J, Van den Heuvel LP. Human mitochondrial complex I in health and disease. Am J Hum Genet 1999; 64:1505–1510.

    Article  PubMed  CAS  Google Scholar 

  25. Loeffen J, Elpeleg O, Smeitink J et al. Mutations in the complex I NDUFS2 gene are associated with hypertrophic cardiomyopathy and encephalomyopathy. Ann Neurol 2001; 48:195–201.

    Article  Google Scholar 

  26. Benit P, Chretien D, Kadhom N et al. Large-scale deletions and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet 2001; 68:1344–1352.

    Article  PubMed  CAS  Google Scholar 

  27. Benit P, Beugnot R, Cretien D et al. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 2003; 21:582–586.

    Article  PubMed  CAS  Google Scholar 

  28. Ahlers PM, Garofano A, Kerscher SJ et al. Application of the obligate aerobic yeast Yarrowia lipolytica to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochim Biophys Acta 2000; 1459:258–265.

    Article  PubMed  CAS  Google Scholar 

  29. Haut S, Brivet M, Touati G et al. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 2003; 113:118–122.

    PubMed  CAS  Google Scholar 

  30. Esposito LA, Melov S, Panov A et al. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci 1999; 96:4820–4825.

    Article  PubMed  CAS  Google Scholar 

  31. Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: A plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000; 64:281–315.

    Article  PubMed  CAS  Google Scholar 

  32. Van Goethem G, Dermaut B, Lofgren A et al. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet 2001; 28:211–212.

    Article  PubMed  CAS  Google Scholar 

  33. Spelbrink JN, Li FY, Tiranti V et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genet 2001; 28:223–231.

    Article  PubMed  CAS  Google Scholar 

  34. Kaukonen J, Juselius JK, Tiranti V et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000; 289:782–785.

    Article  PubMed  CAS  Google Scholar 

  35. Hirano M, Silvestri G, Blake DM et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994; 44:721–727.

    PubMed  CAS  Google Scholar 

  36. Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999; 283:689–692.

    Article  PubMed  CAS  Google Scholar 

  37. Moraes CT, Shanske S, Tritschler HJ et al. mtDNA depletion with variable tissue expression: A novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 1991; 48:492–501.

    PubMed  CAS  Google Scholar 

  38. Ducluzeau PH, Lachaux A, Bouvier R et al. Depletion of mitochondrial DNA associated with infantile cholestasis and progressive liver fibrosis. J Hepatol 1999; 30:149–155.

    Article  PubMed  CAS  Google Scholar 

  39. Tritschler HJ, Andreetta F, Moraes CT et al. Mitochondrial myopathy of childhood associated with depletion of mitochondrial DNA. Neurology 1992; 42:209–217.

    PubMed  CAS  Google Scholar 

  40. Taanman JW, Bodnar AG, Cooper JM et al. Molecular mechanisms in mitochondrial DNA depletion syndrome. Hum Mol Genet 1997; 6:935–942.

    Article  PubMed  CAS  Google Scholar 

  41. Vu TH, Sciacco M, Tanji K et al. Clinical manifestations of mitochondrial DNA depletion. Neurology 1998; 50:1783–1790.

    PubMed  CAS  Google Scholar 

  42. Blake JM, Taanman JM, Morris AM et al. Mitochondrial DNA depletion syndrome is expressed in amniotic fluid cell cultures. Am J Pathol 1999; 155:67–70.

    PubMed  CAS  Google Scholar 

  43. Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet 2001; 17:199–205.

    Article  PubMed  CAS  Google Scholar 

  44. Tang Y, Schon EA, Wilichowski E et al. Rearrangements of human mitochondrial DNA (mtDNA): New insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell 2000; 11:1471–1485.

    PubMed  CAS  Google Scholar 

  45. Mandel H, Szargel R, Labay V et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genet 2001; 29:337–341.

    Article  PubMed  CAS  Google Scholar 

  46. Saada A, Shaag A, Mandel H et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genet 2001; 29:342–344.

    Article  PubMed  CAS  Google Scholar 

  47. Amer ESJ, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995; 67:155–186.

    Article  Google Scholar 

  48. Munch-Petersen B, Cloos L, Tyrsted G et al. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem 1991; 266:9032–9038.

    PubMed  CAS  Google Scholar 

  49. Meuth M. The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp Cell Res 1989; 181:305–316.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshioka A, Tanaka S, Hiraoka 0 et al. Deoxyribonucleoside-triphosphate imbalance death: Deoxyadenosine-induced dNTP imbalance and DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. Biochem Biophys Res Commun 1987; 146:258–264.

    Article  PubMed  CAS  Google Scholar 

  51. Arpaia E, Benveniste P, Di Cristofano A et al. Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice. J Exp Med 2000; 191:2197–2208.

    Article  PubMed  CAS  Google Scholar 

  52. Adams PL, Lightowlers RN, Turnbull DM. Molecular analysis of cytochrome c oxidase deficiency in Leigh’s syndrome. Ann Neurol 1997; 41:268–270.

    Article  PubMed  CAS  Google Scholar 

  53. Chinnery PF, Turnbull DM. Mitochondrial DNA mutations in the pathogenesis of human dis-ease. Mol Med Today 2000; 6:425–432.

    Article  PubMed  CAS  Google Scholar 

  54. Valnot I, Kassis J, Chretien D et al. A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency. Hum Genet 1999; 104:460–466.

    Article  PubMed  CAS  Google Scholar 

  55. Petruzzella V, Tiranti V, Fernandez P et al. Identification and characterization of human cDNAs specific to BCS1, PET 112, SCO1, COX15 and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 1998; 54:494504.

    Article  Google Scholar 

  56. De Lonlay P, Valnot I, Barrientos A et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nature Genet 2001; 29:57–60.

    Article  PubMed  CAS  Google Scholar 

  57. Tiranti V, Hoertnagel K, Carrozzo R et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998; 63:1609–1621.

    Article  PubMed  CAS  Google Scholar 

  58. Zhu Z, Yao J, Johns T et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nature Genet 1998; 20:337–343.

    Article  PubMed  CAS  Google Scholar 

  59. Duhig T, Ruhrberg C, Mor 0 et al. The human Surfeit locus. Genomics 1998; 52:72–78.

    Article  PubMed  CAS  Google Scholar 

  60. Coenen MJH, Van den Heuvel LP, Nijtmans LGJ et al. SURFEIT-1 gene analysis and two-dimensional blue native gel electrophoresis in cytochrome c oxidase deficiency. Biochem Biophys Res Commun 1999; 265:339–344.

    Article  PubMed  CAS  Google Scholar 

  61. Tiranti V, Galimberti C, Nijtmans L et al. Characterization of SURF-1 expression end SURF-lp function in normal and disease conditions. Hum Molec Genet 1999; 8:2533–2540.

    Article  PubMed  CAS  Google Scholar 

  62. Yao J, Shoubridge EA. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum Mol Genet 1999; 8:2541–2549.

    Article  PubMed  CAS  Google Scholar 

  63. Valnot I, Van Kleist-Retzow J-G, Barrientos A et al. A mutation in the human heme A: Farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum Mol Genet 2000; 9:1245–1249.

    Article  PubMed  CAS  Google Scholar 

  64. Papadopoulou LC, Sue CM, Davidson MM et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nature Genet 1999; 23:333–337.

    Article  PubMed  CAS  Google Scholar 

  65. Valnot I, Osmond S, Gigarel N et al. Mutations of SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 2000; 67:1104–1109.

    PubMed  CAS  Google Scholar 

  66. Antonicka H, Mattman A, Carlson CG et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 2003; 72:101–114.

    Article  PubMed  CAS  Google Scholar 

  67. Paret C, Ostermann K, Krause-Buchholz U et al. Human members of the SCOI gene family: Complementation analysis in yeast and intracellular localization. FEBS Lett 1999; 447:65–70.

    Article  PubMed  CAS  Google Scholar 

  68. Sue CM, Karadimas C, Checcarelli N et al. Differential features of patients with mutations in two COX assembly genes, SURF-I and SCO2. Ann Neurol 2000; 47:589–595.

    Article  PubMed  CAS  Google Scholar 

  69. Dickinson EK, Adams DL, Schon EA et al. A human SCO2 mutation helps define the role of scolp in the cylochrome oxidase assembly pathway. J Biol Chem 2000; 275:26780–26785.

    Article  PubMed  CAS  Google Scholar 

  70. Lode A, Kuschel M, Parel C et al. Mitochondrial copper metabolism in yeast: Interaction between Scolp and Cox2p. FEBS Lett 2000; 485:19–24.

    Article  PubMed  CAS  Google Scholar 

  71. Jaksch M, Paret C, Stucka R et al. Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum Mol Genet 2001; 10:3025–3035.

    Article  PubMed  CAS  Google Scholar 

  72. Heaton DN, George GN, Garrison G et al. The mitochondrial copper metallochaperone Coxl7 exists as an oligomeric, polycopper complex. Biochemistry 2001; 40:743–751.

    Article  PubMed  CAS  Google Scholar 

  73. Heaton 0, Nittis T, Srinivasan C et al. Mutational analysis of the mitochondrial copper metallochaperone Coxl7. J Biol Chem 2000; 275:37582–37587.

    Article  PubMed  CAS  Google Scholar 

  74. Kako K, Tsumori K, Ohmasa Y et al. The expression of Coxl7p in rodent tissues and cells. Eur J Biochem 2000; 267:6699–6707.

    Article  PubMed  CAS  Google Scholar 

  75. Barros MH, Carlson CG, Glerum DM et al. Involvement of mitochondrial ferredoxin and Coxl5p in hydroxylation of heme O. FEBS Lett 2001; 492:133–138.

    Article  PubMed  CAS  Google Scholar 

  76. Houstek J, Klement P, Floryk D et al. A novel deficiency of mitochondrial ATPase of nuclear origin. Hum Mol Genet 1999; 8:1967–1974.

    Article  PubMed  CAS  Google Scholar 

  77. DiMauro S, Andreu AL. Mutations in mtDNA: Are we scraping the bottom of the barrel? Brain Pathol 2000; 10:431–441.

    Article  PubMed  CAS  Google Scholar 

  78. Lee N, Daly MJ, Delmonte T et al. A genome linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome c oxidase deficiency to 2pl6. Am J Hum Genet 2001; 68:397–409.

    Article  PubMed  CAS  Google Scholar 

  79. Mootha VK, Lepage P, Miller K et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 2003; 100:605–610.

    Article  PubMed  CAS  Google Scholar 

  80. Rotig A, De Lonlay P, Chretien D et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genet 1997; 17:215–216.

    Article  PubMed  CAS  Google Scholar 

  81. DiDonato S. Disorders related to mitochondrial membranes: Pathology of the respiratory chain and neurodegeneration. J Inherit Metab Dis 2000; 23:247–263.

    Article  CAS  Google Scholar 

  82. Casari G, De Fusco M, Ciarmatori S et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear encoded metalloprotease. Cell 1998; 93:9730983.

    Article  Google Scholar 

  83. DiMauro S, Schon EA. Nuclear power and mitochondrial disease. Nature Genet 1998; 19:214–215.

    Article  PubMed  CAS  Google Scholar 

  84. Koehler CM, Leuenberger D, Merchant S et al. Human deafness dystonia syndrome is a mito-chondrial disease. Proc Natl Acad Sci USA 1999; 96:1817–1819.

    Article  Google Scholar 

  85. Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin related protein, is mutated in dominant optic atrophy. Nature Genet 2000; 26:207–210.

    Article  PubMed  CAS  Google Scholar 

  86. Elpeleg O, Mandel H, Saada A. Depletion of the other genome: mitochondrial DNA depletion syndrome in humans. J Mol Med 2003; 80:389–396.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

van den Heuvel, L.P., Smeitink, J.A.M. (2004). Nuclear DNA and Oxidative Phosphorylation. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics