Skip to main content

Contribution of Histopathological Examination to the Diagnosis of OXPHOS Disorders

  • Chapter
Oxidative Phosphorylation in Health and Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 702 Accesses

Abstract

In muscle histopathological hallmarks for OXPHOS disorders are the so-called ragged-red fiber, the COX-negative or COX-deficient fiber, and the paracrystalline inclusions in mitochondria. Ragged-red fibers may be found in cases with mitochondrial DNA mutations. Up to now no morphological hallmarks were found for nuclear DNA mutations in genes coding for OXPHOS proteins. However, mutations in (nuclear) assembly genes for Complex IV may give rise to severe COX deficiency.

In the central nervous system, the peripheral nervous system, and in other organs, histopathological changes may be severe and specific for a particular OXPHOS disorder. However, direct indications to OXPHOS disorders are generally not present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilton DA, Love S, Goodwin T et al. Demonstration of mitochondrial ribosomal RNA in frozen and paraffin-embedded sections of skeletal muscle by in situ hybridization. Neuropathol Appl Neurobiol 1994; 20(6):573–576.

    PubMed  CAS  Google Scholar 

  2. Engel WK, Cunningham GC. Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy sections. Neurology 1963; 13:919–923.

    PubMed  CAS  Google Scholar 

  3. Terner JY, Schnur J, Gurland J. Stabl sudanophilia. Contributions to the histochemistry of the Sudan dyes. Lab Invest 1963; 12:405–414.

    PubMed  CAS  Google Scholar 

  4. Sengers RC, Trijbels JM, Willems JL et al. Congenital cataract and mitochondrial myopathy of skeletal and heart muscle associated with lactic acidosis after exercise. J Pediatr 1975; 86(6):873–880.

    Article  PubMed  CAS  Google Scholar 

  5. Lojda Z, Gossrau R, Schiebler TH. Enzyme histochemistry. A laboratory manual. Berlin, Heidelberg, New-York: 1979.

    Google Scholar 

  6. Chretien D, Bourgeron T, Rotig A et al. The measurement of the rotenone-sensitive NADH cytochrome c reductase activity in mitochondria isolated from minute amount of human skeletal muscle. Biochem Biophys Res Commun 1990; 173(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  7. Molnar E, Kiss Z, Dux L et al. Vanadate stimulated NADH oxidation in sarcoplasmic reticulum membrane. Acta Biochim Biophys Hung 1988; 23(1):63–74.

    PubMed  CAS  Google Scholar 

  8. Novikoff AB, Goldfischer S. Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem 1969; 17(10):675–680.

    PubMed  CAS  Google Scholar 

  9. Sciacco M, Bonilla E, Schon EA et al. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994; 3(1):13–19.

    Article  PubMed  CAS  Google Scholar 

  10. Rahman S, Lake BD, Taanman JW et al. Cytochrome oxidase immunohistochemistry: clues for genetic mechanisms. Brain 2000; 123:591–600.

    Article  PubMed  Google Scholar 

  11. Sciacco M, Gasparo-Rippa P, Vu TH et al. Study of mitochondrial DNA depletion in muscle by single-fiber polymerase chain reaction. Muscle Nerve 1998; 21(11):1374–1381.

    Article  PubMed  CAS  Google Scholar 

  12. Reichmann H. Enzyme activity analyses along ragged-red and normal single muscle fibres. Histochemistry 1992; 98(2):131–134.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson MA, Turnbull DM, Dick DJ et al. A partial deficiency of cytochrome c oxidase in chronic progressive external ophthalmoplegia. J Neurol Sci 1983; 60(1):31–53.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto M, Nonaka I. Skeletal muscle pathology in chronic progressive external ophthalmoplegia with ragged-red fibers. Acta Neuropathol (Berl) 1988; 76(6):558–563.

    Article  PubMed  CAS  Google Scholar 

  15. Elson JL, Samuels DC, Johnson MA et al. The length of cytochrome c oxidase-negative segments in muscle fibres in patients with mtDNA myopathy. Neuromuscul Disord 2002; 12(9):858–864.

    Article  PubMed  Google Scholar 

  16. Muller-Hocker J, Pongratz D, Hubner G. Focal deficiency of cytochrome-c-oxidase in skeletal muscle of patients with progressive external ophthalmoplegia. Cytochemical-fine-structural study. Virchows Arch A Pathol Anat Histopathol 1983; 402(1):61–71.

    Article  PubMed  CAS  Google Scholar 

  17. Haginoya K, Miyabayashi S, Iinuma K et al. Mosaicism of mitochondria in mitochondrial myopathy: an electronmicroscopic analysis of cytochrome c oxidase. Acta Neuropathol (Berl) 1990; 80(6):642–648.

    Article  PubMed  CAS  Google Scholar 

  18. Luft R, Ikkos D, Palmieri G et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41:1776–1804.

    PubMed  CAS  Google Scholar 

  19. Hammersen F, Gidlof A, Larsson J et al. The occurrence of paracrystalline mitochondrial inclusions in normal human skeletal muscle. Acta Neuropathol (Berl) 1980; 49(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  20. Farrants GW, Hovmoller S, Stadhouders AM. Two types of mitochondrial crystals in diseased human skeletal muscle fibers. Muscle Nerve 1988; 11(1):45–55.

    Article  PubMed  CAS  Google Scholar 

  21. Stadhouders AM, Jap PH, Winkler HP et al. Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci USA 1994; 91(11):5089–5093.

    Article  PubMed  CAS  Google Scholar 

  22. Kamieniecka Z, Schmalbruch H. Neuromuscular disorders with abnormal muscle mitochondria. Int Rev Cytol 1980; 65:321–357.

    Article  PubMed  CAS  Google Scholar 

  23. Sue CM, Tanji K, Hadjigeorgiou G et al. Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology 1999; 52(9):1905–1908.

    PubMed  CAS  Google Scholar 

  24. Ensink RJ, Verhoeven K, Marres HA et al. Early-onset sensorineural hearing loss and late-onset neurologic complaints caused by a mitochondrial mutation at position 7472. Arch Otolaryngol Head Neck Surg 1998; 124(8):886–891.

    PubMed  CAS  Google Scholar 

  25. Schon EA, Bonilla E, DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr 1997; 29(2):131–149.

    Article  PubMed  CAS  Google Scholar 

  26. Andreu AL, Tanji K, Bruno C et al. Exercise intolerance due to a nonsense mutation in the mtDNA ND4 gene. Ann Neurol 1999; 45(6):820–823.

    Article  PubMed  CAS  Google Scholar 

  27. Keightley JA, Anitori R, Burton MD et al. Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. Am J Hum Genet 2000; 67(6):1400–1410.

    Article  PubMed  CAS  Google Scholar 

  28. Comi GP, Bordoni A, Salani S et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 1998; 43(1):110–116.

    Article  PubMed  CAS  Google Scholar 

  29. Keightley JA, Hoffbuhr KC, Burton MD et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 1996; 12(4):410–416.

    Article  PubMed  CAS  Google Scholar 

  30. Bourgeron T, Rustin P, Chretien D et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995; 11(2):144–149.

    Article  PubMed  CAS  Google Scholar 

  31. Petruzzella V, Papa S. Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene PG-2002.

    Google Scholar 

  32. Rahman S, Blok RB, Dahl HH et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996; 39(3):343–351.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson BH. Human cytochrome oxidase deficiency. Pediatr Res 2000; 48(5):581–585.

    PubMed  CAS  Google Scholar 

  34. Tiranti V, Hoertnagel K, Carrozzo R et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998; 63(6):1609–1621.

    Article  PubMed  CAS  Google Scholar 

  35. Papadopoulou LC, Sue CM, Davidson MM et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 1999; 23(3):333–337.

    Article  PubMed  CAS  Google Scholar 

  36. Sue CM, Karadimas C, Checcarelli N et al. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann Neurol 2000; 47(5):589–595.

    Article  PubMed  CAS  Google Scholar 

  37. Valnot I, Kleist-Retzow JC, Barrientos A et al. A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency. Hum Mol Genet 2000; 9(8):1245–1249.

    Article  PubMed  CAS  Google Scholar 

  38. Ogier H, Lombes A, Scholte HR et al. de Toni-Fanconi-Debre syndrome with Leigh syndrome revealing severe muscle cytochrome c oxidase deficiency. J Pediatr 1988; 112(5):734–739.

    Article  PubMed  CAS  Google Scholar 

  39. Wredenberg A, Wibom R, Wilhelmsson H et al. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA 2002; 99(23):15066–15071.

    Article  PubMed  CAS  Google Scholar 

  40. Graham BH, Waymire KG, Cottrell B et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997; 16(3):226–234.

    Article  PubMed  CAS  Google Scholar 

  41. Rifai Z, Welle S, Kamp C et al. Ragged red fibers in normal aging and inflammatory myopathy. Ann Neurol 1995; 37(1):24–29.

    Article  PubMed  CAS  Google Scholar 

  42. Kovalenko SA, Kopsidas G, Kelso JM et al. Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem Biophys Res Commun 1997; 232(1):147–152.

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto M, Koga Y, Ohtaki E et al. Focal cytochrome c oxidase deficiency in various neuromuscular diseases. J Neurol Sci 1989; 91(1–2):207–213.

    Article  PubMed  CAS  Google Scholar 

  44. Dalakas MC, Illa I, Pezeshkpour GH et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med 1990; 322(16):1098–1105.

    Article  PubMed  CAS  Google Scholar 

  45. Higuchi I, Izumo S, Kuriyama M et al. Germanium myopathy: clinical and experimental pathological studies. Acta Neuropathol (Berl) 1989; 79(3):300–304.

    Article  PubMed  CAS  Google Scholar 

  46. Bastiaensen LAK, Stadhouders AM, ter Laak HJ et al. Kearns-Sayre syndrome. Remarks on the pathogenesis with reference to a case with dwarfism and calcification of basal ganglia. Neuro-ophthalmology 1984; 4:55–63.

    Google Scholar 

  47. Rubio-Gozalbo ME, Smeitink JA, Ruitenbeek W et al. Spinal muscular atrophy-like picture, cardiomyopathy, and cytochrome c oxidase deficiency. Neurology 1999; 52(2):383–386.

    PubMed  CAS  Google Scholar 

  48. Salviati L, Sacconi S, Rasalan MM et al. Cytochrome c oxidase deficiency due to a novel SCO2 mutation mimics Werdnig-Hoffmann disease. Arch Neurol 2002; 59(5):862–865.

    Article  PubMed  Google Scholar 

  49. Montpetit VJ, Andermann F, Carpenter S et al. Subacute necrotizing encephalomyelopathy. A review and a study of two families. Brain 1971; 94(1):1–30.

    Article  PubMed  CAS  Google Scholar 

  50. Naviaux RK, Nyhan WL, Barshop BA et al. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alpers’ syndrome. Ann Neurol 1999; 45(1):54–58.

    Article  PubMed  CAS  Google Scholar 

  51. Lonlay-Debeney P, Kleist-Retzow JC, Hertz-Pannier L et al. Cerebral white matter disease in children may be caused by mitochondrial respiratory chain deficiency. J Pediatr 2000; 136(2):209–214.

    Article  PubMed  Google Scholar 

  52. Moroni I, Bugiani M, Bizzi A et al. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics 2002; 33(2):79–85.

    Article  PubMed  CAS  Google Scholar 

  53. de Koning TJ, de Vries LS, Groenendaal F et al. Pontocerebellar hypoplasia associated with respiratory-chain defects. Neuropediatrics 1999; 30(2):93–95.

    PubMed  Google Scholar 

  54. Tsuchiya K, Miyazaki H, Akabane H et al. MELAS with prominent white matter gliosis and atrophy of the cerebellar granular layer: a clinical, genetic, and pathological study. Acta Neuropathol (Berl) 1999; 97(5):520–524.

    Article  PubMed  CAS  Google Scholar 

  55. Chow CW, Anderson RM, Kenny GC. Neuropathology in cerebral lactic acidosis. Acta Neuropathol (Berl) 1987; 74(4):393–396.

    Article  PubMed  CAS  Google Scholar 

  56. Dyck P, Chance P, Lebo R et al. Hereditary and sensory neuropathies. In: Dyck P, Thomas P, Griffin J, Low P, Poduslo J, editors. Peripheral neuropathy. Philadelphia: Saunders, 1993: 1094–1136.

    Google Scholar 

  57. van Domburg PH, Gabreels-Festen AA, Gabreels FJ et al. Mitochondrial cytopathy presenting as hereditary sensory neuropathy with progressive external ophthalmoplegia, ataxia and fatal myoclonic epileptic status. Brain 1996; 119:997–1010.

    Article  PubMed  Google Scholar 

  58. Molnar M, Neudecker S, Schroder JM. Increase of mitochondria in vasa nervorum of cases with mitochondrial myopathy, Kearns-Sayre syndrome, progressive external ophthalmoplegia and MELAS. Neuropathol Appl Neurobiol 1995; 21(5):432–439.

    PubMed  CAS  Google Scholar 

  59. Schroder JM, Sommer C. Mitochondriai abnormalities in human sural nerves: fine structural evaluation of cases with mitochondrial myopathy, hereditary and non-hereditary neuropathies, and review of the literature. Acta Neuropathol (Berl) 1991; 82(6):471–482.

    Article  PubMed  CAS  Google Scholar 

  60. Schroder JM. Neuropathy associated with mitochondrial disorders. Brain Pathol 1993; 3(2):177–190.

    PubMed  CAS  Google Scholar 

  61. Jacobs JM, Harding BN, Lake BD et al. Peripheral neuropathy in Leigh’s disease. Brain 1990; 113:447–462.

    Article  PubMed  Google Scholar 

  62. Rustin P, Lebidois J, Chretien D et al. Endomyocardial biopsies for early detection of mitochondrial disorders in hypertrophic cardiomyopathies. J Pediatr 1994; 124(2):224–228.

    PubMed  CAS  Google Scholar 

  63. Guenthard J, Wyler F, Fowler B et al. Cardiomyopathy in respiratory chain disorders. Arch Dis Child 1995; 72(3):223–226.

    Article  PubMed  CAS  Google Scholar 

  64. Kuroiwa T, Kuwata T, Nakayama T et al. Mitochondrial encephalomyopathy showing prominent microvacuolation and necrosis of intestinal smooth muscle cells: a case diagnosed by rectal biopsy. Acta Neuropathol (Berl) 1998; 96(1):86–90.

    Article  PubMed  CAS  Google Scholar 

  65. Mandel H, Hartman C, Berkowitz D et al. The hepatic mitochondrial DNA depletion syndrome: ultrastructural changes in liver biopsies. Hepatology 2001; 34(4 Pt 1):776–784.

    Article  PubMed  CAS  Google Scholar 

  66. Szabolcs MJ, Seigle R, Shanske S et al. Mitochondrial DNA deletion: a cause of chronic tubulointerstitial nephropathy. Kidney Int 1994; 45(5):1388–1396.

    PubMed  CAS  Google Scholar 

  67. Zsurka G, Ormos J, Ivanyi B et al. Mitochondrial mutation as a probable causative factor in familial progressive tubulointerstitial nephritis. Hum Genet 1997; 99(4):484–487.

    Article  PubMed  CAS  Google Scholar 

  68. Nakamura S, Yoshinari M, Doi Y et al. Renal complications in patients with diabetes mellitus associated with an A to G mutation of mitochondrial DNA at the 3243 position of leucine tRNA. Diabetes Res Clin Pract 1999; 44(3):183–189.

    Article  PubMed  CAS  Google Scholar 

  69. Shimoni E, Muller M. On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J Microsc 1998; 192:236–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Lammens, M., ter Laak, H. (2004). Contribution of Histopathological Examination to the Diagnosis of OXPHOS Disorders. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics