Skip to main content

Abstract

We have estimated the maximal size for an RNA motif recoverable from selection-amplification for new RNA activities, under conditions that span those in present laboratory use. The number of sequence pieces from which an active site is folded (the modularity) is a crucial variable. Routine laboratory experiments might isolate RNAs of modularity 4 containing ≤33 specified nudeotides. The probability of recovering shorter motifs increases rapidly, but the likely maximal motif size declines 1.66 nudeotides per 10-fold decrease in experimental scale. In such experiments, randomized tracts of 80–120 nucleotides extract most of the benefit of longer initially randomized pools. The same methods also permit extrapolation to conditions more plausible during the initiation of an RNA world. Under these conditions, active RNAs were likely highly modular, even more so than in modern experiments. Strikingly, several lines of evidence converge on the conclusion that 15 to 35-mer active sites would be the working material for an early RNA world. If initiation of an RNA world is synonymous with emergence of active structures from randomized sequences (the Axiom of Origin), populations containing only zeptomoles of RNA (hundreds to hundreds of thousands of molecules) might yield RNAs at the lower end of this size range. This makes the RNA world much more accessible than previously suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel DP, Szostak JW. Isolation of new ribozymes from a large pool of random sequences. Science 1993; 261:1411–1418.

    Article  PubMed  CAS  Google Scholar 

  2. Ciesiolka J, Illangasekare M, Majerfeld I et al. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol 1996; 267:315–335.

    Article  PubMed  CAS  Google Scholar 

  3. Ekland EH, Szostak JW, Bartel DP. Structurally complex and highly active RNA ligase derivatives from randomized RNA sequences. Science 1995; 269:374–370.

    Article  Google Scholar 

  4. Ellington A, Szostak JW. In vitro selection of RNAs that bind specific ligands. Nature 1990; 346:818–822.

    Article  PubMed  CAS  Google Scholar 

  5. Ferris JP, Hill AR, Liu R et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 1996; 381:59–61.

    Article  PubMed  CAS  Google Scholar 

  6. Fresco JR, Alberts BM, Doty P. Some molecular details of the secondary structure of ribonucleic acids. Nature 1960; 188:98–101.

    Article  PubMed  CAS  Google Scholar 

  7. Hecker KH, Rill RL. Error analysis of chemically synthesized polynucleotides. Biotechniques 1998; 24:256–260.

    PubMed  CAS  Google Scholar 

  8. Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 2000; 287:820–825.

    Article  PubMed  CAS  Google Scholar 

  9. Huang F, Bugg CW, Yarus, M. RNA-catalyzed CoA, NAD and FAD synthesis from phosphopantetheine, NMN and FMN. Biochemistry 2000; 39:15548–15555.

    Article  PubMed  CAS  Google Scholar 

  10. Illangasekare M, Yarus M. A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. RNA 1999; 5:1482–1489.

    Article  PubMed  CAS  Google Scholar 

  11. Illangasekare M, Kovalchuke O, Yarus M. Essential structures of a self-aminoacylating RNA. J Mol Biol 1997; 274:519–529.

    Article  PubMed  CAS  Google Scholar 

  12. Illangasekare M, Sanchez G, Nickles T et al. Aminoacyl-RNA synthesis catalyzed by an RNA. Science 1995; 267:643–647.

    Article  PubMed  CAS  Google Scholar 

  13. Jadhav VR, Yarus, M. Acyl-CoAs from coenzyme-ribozymes. Biochemistry 2002; 41:723–729.

    Article  PubMed  CAS  Google Scholar 

  14. Jenison RD, Gill SC, Pardi A et al. High-resolution molecular discrimination by RNA. Science 1994; 263:1425–1429.

    Article  PubMed  CAS  Google Scholar 

  15. Johnston WK, Unrau PJ, Lawrence MS et al. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 2001; 292:1319–1325.

    Article  PubMed  CAS  Google Scholar 

  16. Joyce GF, Orgel LE. Prospects for understanding the origin of the RNA world. In: Gesteland RF, Atkins JF, eds. The RNA World. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1993:1–25.

    Google Scholar 

  17. Kazakov S, Altman S. A trinucleotide can promote metal ion-dependent specific cleavage of RNA. Proc Nat Acad Sci USA 1992; 89:7939–7943.

    Article  PubMed  CAS  Google Scholar 

  18. Keefe AD, Szostak JW. Functional proteins from a random-sequence library. Nature 2001; 410:715–718.

    Article  PubMed  CAS  Google Scholar 

  19. Kumar RK, Yarus M. RNA-catalyzed amino acid activation. Biochemistry 2001; 40:6998–7004.

    Article  PubMed  CAS  Google Scholar 

  20. Roberson D, Joyce J. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990; 344:467–468.

    Article  Google Scholar 

  21. Sabeti PC, Unrau PJ, Bartel DP. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem Biol 1997; 4:767–774.

    Article  PubMed  CAS  Google Scholar 

  22. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment. Science 1990; 249:505–510.

    Article  PubMed  CAS  Google Scholar 

  23. Vant-Hull B, Payano-Baez A, Davis, RH et al. The mathematics of SELEX against complex targets. J Mol Biol 1998; 278:579–597.

    Article  PubMed  CAS  Google Scholar 

  24. Verma S, Vaish NK, Eckstein F. Structure-function studies of the hammerhead ribozyme. Curr Opin Chem Biol 1997; 1:532–536.

    Article  PubMed  CAS  Google Scholar 

  25. Vlassov A, Khvorova A, Yarus M. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc Nat Acad Sci USA 2001; 98:7706–7711.

    Article  PubMed  CAS  Google Scholar 

  26. White III HB. Coenzymes as fossils of an earlier metabolic state. J Mol Evol 1976; 7:101–104.

    Article  PubMed  CAS  Google Scholar 

  27. Yarus M. RNA-ligand chemistry: A testable source for the genetic code. RNA 2000; 6:475–484.

    Article  PubMed  CAS  Google Scholar 

  28. Yarus M, Illangasekare M. Aminoacyl-tRNA synthetases and self-acylating ribozymes. In: Gesteland RF, Cech TR, Atkins JF, eds. The RNA world. 2nd Edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1999:183–196.

    Google Scholar 

  29. Yarus M. On translation by RNAs alone. CSHSQB V66, The Ribosome, 2001:207–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Yarns, M., Knight, R.D. (2004). The Scope of Selection. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics