Skip to main content

Adaptive Evolution of the Genetic Code

  • Chapter
The Genetic Code and the Origin of Life

Abstract

All known genetic codes use 4 bases and 20 amino acids, but many other bases and amino acids have been synthesized and/or found in organisms. The coding relation ships between particular trinucleotides and amino acids can and have evolved, as shown by variants in both mitochondrial and nuclear lineages. Here we review the evidence that vari-ous aspects of the genetic code, including its composition, its degeneracy and the assignments of particular codons to particular amino acids are in some sense optimal, chosen over alterna-tives by natural selection. We also examine several specific proposals about how the code evolved prior to its fixation in the last common ancestor of extant life. Although the pattern of codon assignments appears nearly optimal, other claims for adaptive features are more speculative and many interesting questions remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson D. On Growth and Form. Cambridge: Cambridge University Press, 1917.

    Google Scholar 

  2. Gould SJ, Lewontin R. The Spandrels of San Marco and the Panglossian Paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London 1979; 205:581–598.

    PubMed  CAS  Google Scholar 

  3. Neander K. The teleological notion of “function”. Australasian Journal of Philosophy 1991; 69.4:454–468.

    Google Scholar 

  4. Voet D, Voet JG. Biochemistry. 2 ed. New York: John Wiley & Sons, 1995.

    Google Scholar 

  5. Gilbert W. The RNA world. Nature 1986; 319:618.

    Google Scholar 

  6. Freeland SJ, Knight RD, Landweber LF. Do proteins predate DNA? Science 1999; 286(5440):690–2.

    PubMed  CAS  Google Scholar 

  7. Weber AL. The triose model: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Orig Life Evol Biosph 1987; 17(2):107–19.

    PubMed  CAS  Google Scholar 

  8. Weber AL. Thermal synthesis and hydrolysis of polyglyceric acid. Orig Life Evol Biosph 1989; 19:7–19.

    PubMed  CAS  Google Scholar 

  9. Joyce GF. Schwartz AW, Miller SL et al. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 1987; 84:4398–4402.

    PubMed  CAS  Google Scholar 

  10. Eschenmoser A. Chemical etiology of nucleic acid structure. Science 1999; 284(5423):2118–24.

    PubMed  CAS  Google Scholar 

  11. Larralde R, Robertson MP, Miller SL. Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci USA 1995; 92:8158–8160.

    PubMed  CAS  Google Scholar 

  12. Nielsen PE, Egholm M, Berg RH et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254:1497–1500.

    PubMed  CAS  Google Scholar 

  13. Hanvey JC, Peffer NJ, Bisi JE et al. Antisense and antigene properties of peptide nucleic acids. Science 1992; 258(5087):1481–5.

    PubMed  CAS  Google Scholar 

  14. Nelson KE, Levy M, Miller SL. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 2000; 97(8):3868–71.

    PubMed  CAS  Google Scholar 

  15. Nielsen PE. Peptide nucleic acid (PNA): A model structure for the primordial genetic material? Orig Life Evol Biosph 1993; 23(5–6):323–7.

    PubMed  CAS  Google Scholar 

  16. Joyce GF, Orgel LE. Prospects for understanding the origin of the RNA world. In: Gesteland RF, Atkins JF, eds. New York: Cold Spring Harbor Laboratory Press, 1993:1–25.

    Google Scholar 

  17. Piccirilli JA, Krauch T, Moroney SE et al. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990; 343:33–37.

    PubMed  CAS  Google Scholar 

  18. Wu Y, Ogawa AK, Berger M et al. Efforts toward expansion of the genetic alphabet: Optimization of interbase hydrophobic interactions. J Am Chem Soc 2000; 122:7621–7632.

    CAS  Google Scholar 

  19. Lutz MJ, Horlacher J, Benner SA. Recognition of a non-standard base pair by thermostable DNA polymerases. Bioorg Med Chem Lett 1998; 8(10):1149–52.

    PubMed  CAS  Google Scholar 

  20. Ogawa AK, Wu YQ, McMinn DL et al. Efforts toward the expansion of the genetic alphabet: Information storage and replication with unnatural hydrophobic base pairs. J Am Chem Soc 2000; 122:3274–3287.

    CAS  Google Scholar 

  21. Oró J, Kimball P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys 1961; 94:217–227.

    PubMed  Google Scholar 

  22. Levy M, Miller SL. The prebiotic synthesis of modified purines and their potential role in the RNA world. J Mol Evol 1999; 48(6):631–7.

    PubMed  CAS  Google Scholar 

  23. Levy M, Miller SL. The stability of the RNA bases: Implications for the origin of life. Proc Natl Acad Sci USA 1998; 95(14):7933–8.

    PubMed  CAS  Google Scholar 

  24. Wong JT-F, Bronskill PM. Inadequacy of prebiotic synthesis as origin of proteinaceous amino acids. J Mol Evol 1979; 13:115–125.

    PubMed  CAS  Google Scholar 

  25. Jukes TH. Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Comm 1973; 53(3):709–714.

    PubMed  CAS  Google Scholar 

  26. Weber AL, Miller SL. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 1981; 17:273–284.

    PubMed  CAS  Google Scholar 

  27. Budisa N, Minks C, Alefelder S et al. Toward the experimental codon reassignment in vivo: Protein building with an expanded amino acid repertoire. FASEB J 1999; 13(1):41–51.

    PubMed  CAS  Google Scholar 

  28. Budisa N, Minks C, Medrano FJ et al. Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: Structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci 1998; 95:455–459.

    PubMed  CAS  Google Scholar 

  29. de Duve C, Vital Dust. New York: Basic Books, 1995.

    Google Scholar 

  30. Orgel LE. Evolution of the genetic apparatus. J Mol Biol 1968; 38:381–393.

    PubMed  CAS  Google Scholar 

  31. Crick FHC. The origin of the genetic code. J Mol Biol 1968; 38:367–379.

    Google Scholar 

  32. Fitch WM, Upper K. The Phylogeny of tRNA Sequences Provides Evidence for Ambiguity Reduction in the Origin of the Genetic Code. Cold Spring Harbor Symp Quant Biol 1987; 52:759–767.

    PubMed  CAS  Google Scholar 

  33. Szathmary E. Four letters in the genetic alphabet: A frozen evolutionary optimum? Proc R Soc Lond B Biol Sci 1991; 245(1313):91–9.

    CAS  Google Scholar 

  34. Szathmary E. What is the optimum size for the genetic alphabet? Proc Natl Acad Sci USA 1992; 89(7):2614–8.

    PubMed  CAS  Google Scholar 

  35. Wong JT-F. The evolution of a universal genetic code. Proc Natl Acad Sci USA 1976; 73(7):2336–2340.

    PubMed  CAS  Google Scholar 

  36. Eigen M, Schuster P. The hypercycle: A Principle of Natural Self-Organization. New York: Springer, 1979.

    Google Scholar 

  37. Shepherd JC. Periodic correlations in DNA sequences and evidence suggesting their evolutionary origin in a comma-less genetic code. J Mol Evol 1981; 17(2):94–102.

    PubMed  Google Scholar 

  38. Dillon LS. The Origins of the Genetic Code. Bot Rev 1973; 39:301–345.

    CAS  Google Scholar 

  39. Taylor FJR, Coates D. The code within the codons. Bio Systems 1989; 22:177–187.

    PubMed  CAS  Google Scholar 

  40. Davis BK. Evolution of the genetic code. Prog Biophys Mol Biol 1999; 72(2):157–243.

    PubMed  CAS  Google Scholar 

  41. Jiménez-Sánchez A. On the origin and evolution of the genetic code. J Mol Evol 1995; 41:712–716.

    PubMed  Google Scholar 

  42. Hartman H. Speculations on the origin of the genetic code. J Mol Evol 1995; 40:541–544.

    PubMed  CAS  Google Scholar 

  43. Lehman N, Jukes TH. Genetic code development by stop codon takeover. J Theor Biol 1988; 135(2):203–14.

    PubMed  CAS  Google Scholar 

  44. Baumann U, Oró J. Three stages in the evolution of the genetic code. Bio Systems 1993; 29:133–141.

    PubMed  CAS  Google Scholar 

  45. Fitch WM. The relation between frequencies of amino acids and ordered trinucleotides. J Mol Biol 1966; 16:1–8.

    PubMed  CAS  Google Scholar 

  46. Trifonov E, Bettecken T. Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 1997; 205(1–2):1–6.

    PubMed  CAS  Google Scholar 

  47. Trifonov EN. Consensus temporal order of amino acids and evolution of the triplet code. Gene 2000; 261(1):139–151.

    PubMed  CAS  Google Scholar 

  48. King JL, Jukes TH. Non-Darwinian evolution. Science 1969; 164(881):788–98.

    PubMed  CAS  Google Scholar 

  49. Crick FH. Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 1966; 19(2):548–555.

    PubMed  CAS  Google Scholar 

  50. Lagerkvist U. “Two out of three”: An alternative method for codon reading. Proc Natl Acad Sci USA 1978; 75(4):1759–1762.

    PubMed  CAS  Google Scholar 

  51. Lagerkvist U. Codon misreading: a restriction operative in the evolution of the genetic code. American Scientist 1980; 68:192–198.

    CAS  Google Scholar 

  52. Lagerkvist U. Unorthodox codon reading and the evolution of the genetic code. Cell 1981; 23:305–306.

    PubMed  CAS  Google Scholar 

  53. Knight RD, Freeland SJ, Landweber LF. Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2001; 2:49–58.

    PubMed  CAS  Google Scholar 

  54. Szathmáry E. Codon swapping as a possible evolutionary mechanism. J Mol Evol 1991; 32:178–182.

    Google Scholar 

  55. Jungck JR. The genetic code as a periodic table. J Mol Evol 1978; 11:211–224.

    PubMed  CAS  Google Scholar 

  56. Tate WP, Poole ES, Dalphin ME et al. The translational stop signal: Codon with a context, or extended factor recognition element? Biochimie 1996; 78:945–952.

    PubMed  CAS  Google Scholar 

  57. Cullman G, Labouygues J. Noise immunity of the genetic code. Bio Systems 1983; 16:9–29.

    Google Scholar 

  58. Swanson R. A unifying concept for the amino acid code. Bull Math Biol 1984; 46:187–203.

    PubMed  CAS  Google Scholar 

  59. Cullman G, Labouygues J. The logic of the genetic cdoe. Math Model 1987; 8:643–646.

    Google Scholar 

  60. Figureau A. Information theory and the genetic code. Orig Life 1987; 17:439–449.

    CAS  Google Scholar 

  61. Figureau A. Optimization and the genetic code. Orig Life Evol Biosph 1989; 19:57–67.

    PubMed  CAS  Google Scholar 

  62. Figureau A, Pouzet M. Genetic code and optimal resistance to the effect of mutations. Orig Life Evol Biosph 1984; 14:579–588.

    CAS  Google Scholar 

  63. Sonneborn TM. Degeneracy of the genetic code: extent, nature, and genetic implications. In: Bryson V, Vogel HJ, eds. Evolving Genes and Proteins. New York: Academic Press, 1965:377–297.

    Google Scholar 

  64. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ, eds. Evolving Genes and Proteins. New York: Academic Press, 1965.

    Google Scholar 

  65. Soto MA, Toha CJ. A hardware interpretation of the evolution of the genetic code. BioSystems 1985; 18:209–215.

    PubMed  CAS  Google Scholar 

  66. Knight RD, Landweber LF, Yams M. How Mitochondria Redefine the Code. J Mol Evol 2001; 53(4–5):299–313.

    PubMed  CAS  Google Scholar 

  67. Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. GenomeBiology 2001; 2(4):http://www.genomebiology.com/2001/2/4/research/0010/.

    Google Scholar 

  68. Mackay AL. Optimization of the genetic code. Nature 1967; 216(111):159–60.

    PubMed  CAS  Google Scholar 

  69. Ota T, Kimura M. Amino acid composition of proteins as a product of molecular evolution. Science 1971; 174(5):150–3.

    PubMed  CAS  Google Scholar 

  70. Dufton MJ. The significance of redundancy in the genetic code. J Theor Biol 1983; 102(4):521–6.

    PubMed  CAS  Google Scholar 

  71. Dufton MJ. Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J Theor Biol 1997; 187(2):165–73.

    PubMed  CAS  Google Scholar 

  72. Antillon A, Ortega-Blake I. A group theory analysis of the ambiguities in the genetic code: on the existence of a generalized genetic code. J Theor Biol 1985; 112(4):757–69.

    PubMed  CAS  Google Scholar 

  73. Bashford JD, Tsohantjis I, Jarvis PD. A supersymmetric model for the evolution of the genetic code. Proc Natl Acad Sci USA 1998; 95(3):987–92.

    PubMed  CAS  Google Scholar 

  74. Hornos JE, Hornos YM. Algebraic model for the evolution of the genetic code. Physical Review Letters 1993; 71(26):4401–4404.

    PubMed  CAS  Google Scholar 

  75. Maeshiro T, Kimura M. The role of robustness and changeability on the origin and evolution of genetic codes. Proc Natl Acad Sci USA, 1998; 95(9):5088–93.

    PubMed  CAS  Google Scholar 

  76. Klump HH. The physical basis of the genetic code: the choice between speed and precision. Arch Biochem Biophys 1993; 301(2):207–9.

    PubMed  CAS  Google Scholar 

  77. Speyer JF, Lengyel CB, Wahba AJ et al. Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symp Quant Biol, 1963; 28:559–567.

    CAS  Google Scholar 

  78. Volkenstein MV. Coding of polar and non-polar amino acids. Nature 1965; 207:294–295.

    PubMed  CAS  Google Scholar 

  79. Woese CR. Order in the genetic code. Proc Natl Acad Sci USA 1965; 54:71–75.

    PubMed  CAS  Google Scholar 

  80. Pelc SR. Correlation between coding triplets and amino acids. Nature 1965; 207:597–599.

    PubMed  CAS  Google Scholar 

  81. Epstein CJ. Role of the amino-acid ‘code’ and of selection for conformation in the evolution of proteins. Nature 1966; 210:25–28.

    PubMed  CAS  Google Scholar 

  82. Goldberg AL, Wittes RE. Genetic code: aspects of organization. Science 1966; 153:420–424.

    PubMed  CAS  Google Scholar 

  83. Woese CR. On the evolution of the genetic code. Proc Natl Acad Sci USA 1965; 54:1546–1552.

    PubMed  CAS  Google Scholar 

  84. Woese CR. The Genetic Code: The Molecular Basis for Genetic Expression. New York: Harper & Row, 1967.

    Google Scholar 

  85. Woese CR, Dugre DH, Dugre SA et al. On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symp Quant Biol 1966; 31:723–736.

    PubMed  CAS  Google Scholar 

  86. Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci USA 1964; 51:883–890.

    PubMed  CAS  Google Scholar 

  87. Topal MD, Fresco JR. Base pairing and fidelity in codon-anticodon interaction. Nature 1976; 263(5575):289–93.

    PubMed  CAS  Google Scholar 

  88. Topal MD, Fresco JR. Complementary base pairing and the origin of substitution mutations. Nature 1976; 263(5575):285–9.

    PubMed  CAS  Google Scholar 

  89. Suen W, Spiro TG, Sowers LC et al. Identification by UV resonance Raman spectroscopy of animino tautomer of 5-hydroxy-2′-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2′-deoxycytidine. Proc Natl Acad Sci USA 1999; 96(8):4500–5.

    PubMed  CAS  Google Scholar 

  90. Alff-Steinberger C. The genetic code and error transmission. Proc Natl Acad Sci USA 1969; 64:584–591.

    PubMed  CAS  Google Scholar 

  91. Haig D, Hurst LD. A quantitative measure of error minimization in the genetic code. J Mol Evol 1991; 33:412–417.

    PubMed  CAS  Google Scholar 

  92. Gamow G, Possible mathematical relation between deoxyribonucleic acid and protein. Kgl Dansk Videnskab Selskab Biol Medd 1954; 22:1–13.

    CAS  Google Scholar 

  93. Haurowitz F. Chemistry and Biology of Proteins. New York: Academic Press, 1950.

    Google Scholar 

  94. Crick FHC. The structure of nucleic acids and their role in protein synthesis. Biochem Soc Symp 1957; 14:25–26.

    Google Scholar 

  95. Dunnill P. Triplet Nucleotide—amino acid pairing: A stereochemical basis for the division between protein and nonprotein amino-acids. Nature 1966; 210:1267–1268.

    CAS  Google Scholar 

  96. Pelc SR, Welton MGE. Stereochemical relationship between coding triplets and amino-acids. Nature 1966; 209:868–872.

    PubMed  CAS  Google Scholar 

  97. Woese CR, Dugre DH, Saxinger WC et al. The molecular basis for the genetic code. Proc Natl Acad Sci USA 1966; 55:966–974.

    PubMed  CAS  Google Scholar 

  98. Crick FHC. The recent excitement in the coding problem. Progress in nucleic acids 1963; 1:163–217.

    CAS  Google Scholar 

  99. Osawa S, Jukes TH. Codon reassignment (codon capture) in evolution. J Mol Evol 1989; 28:271–278.

    PubMed  CAS  Google Scholar 

  100. Barrell BG, Bankier AT, Drouin J. A different genetic code in human mitochondria. Nature 1979; 282(5735):189–94.

    PubMed  CAS  Google Scholar 

  101. Jukes TH. Amino acid codes in mitochondria as possible clues to primitive codes. J Mol Evol 1981; 18(1):15–7.

    PubMed  CAS  Google Scholar 

  102. Grivell LA. Molecular evolution. Deciphering divergent codes. Nature 1986; 324(6093):109–10.

    PubMed  CAS  Google Scholar 

  103. Lewin B, Genes V. Oxford: Oxford University Press, 1994.

    Google Scholar 

  104. Hasegawa M, Miyata T. On the antisymmetry of the amino acid code table. Orig Life 1980; 10(3):265–70.

    PubMed  CAS  Google Scholar 

  105. Muramatsu T, Nishikawa K, Nemoto F et al. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 1988; 336(6195):179–81.

    PubMed  CAS  Google Scholar 

  106. Senger B, Auxilien S, Englisch et al. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. Biochemistry 1997; 36(27):8269–75.

    PubMed  CAS  Google Scholar 

  107. Bonitz SG, Berlani R, Coruzzi G et al. Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 1980; 77(6):3167–70.

    PubMed  CAS  Google Scholar 

  108. Osawa S, Ohama T, Jukes TH et al. Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria. J Mol Evol 1989; 29(3):202–7.

    PubMed  CAS  Google Scholar 

  109. Schultz DW, Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 1994; 235:1377–1380.

    PubMed  CAS  Google Scholar 

  110. Schultz DW, Yarus M. On malleability in the genetic code. J Mol Evol 1996 42:597–601.

    PubMed  CAS  Google Scholar 

  111. Jukes TH, Osawa S, Muto A et al. Evolution of Anticodons: Variations in the Genetic Code. Cold Spring Harbor Symposia on Quantitative Biology, 1987; 52:769–776.

    PubMed  CAS  Google Scholar 

  112. Osawa S, Jukes TH. Evolution of the genetic code as affected by anticodon content. Trends Genet 1988; 4(7):191–198.

    PubMed  CAS  Google Scholar 

  113. Osawa S, Jukes TH, Watanabe K et al. Recent evidence for evolution of the genetic code. Microbiol Rev 1992; 56(1):229–64.

    PubMed  CAS  Google Scholar 

  114. Zinoni F, Birkmann A, Leinfelder W et al. Cotranslational insertion of selenocysteine into a formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci USA 1987; 84:3156–3160.

    PubMed  CAS  Google Scholar 

  115. Leinfelder W, Zehelein E, Mandrand-Berthelot MA et al. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 1988; 331(6158):723–5.

    PubMed  CAS  Google Scholar 

  116. Zinoni F, Heider J, Bock A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci USA 1990; 87(12):4660–4.

    PubMed  CAS  Google Scholar 

  117. Tate WP, Mansell JB, Mannering SA et al. UGA: A dual signal for’ stop’ and for recoding in protein synthesis. Biochemistry (Mosc) 1999; 64(12):1342–53.

    PubMed  CAS  Google Scholar 

  118. Commans S, Bock A. Selenocysteine inserting tRNAs: an overview. FEMS Microbiol Rev 1999; 23(3):335–51.

    PubMed  CAS  Google Scholar 

  119. Lenhard B, Orellana O, Ibba M et al. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 1999; 27(3):721–9.

    PubMed  CAS  Google Scholar 

  120. Forchhammer K, Boesmiller K, Bock A. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. Biochimie 1991; 73(12):1481–6.

    PubMed  CAS  Google Scholar 

  121. Schön A, Kannangara CG, Gough S et al. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988; 331:187–190.

    PubMed  Google Scholar 

  122. Wong JT-F. A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 1975; 72(5):1909–1912.

    PubMed  CAS  Google Scholar 

  123. Di Giulio M. Origin of glutaminyl-tRNA synthetase: an example of palimpsest? J Mol Evol 1993; 37:5–10.

    PubMed  Google Scholar 

  124. Becker HD Kern D. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci USA 1998; 95(22):12832–7.

    PubMed  CAS  Google Scholar 

  125. Tumbula DL, Becker HD, Chang WZ et al. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000; 407(6800):106–10.

    PubMed  CAS  Google Scholar 

  126. Di Giulio M. Some aspects of the organization and evolution of the genetic code. J Mol Evol 1989; 29:191–201.

    PubMed  Google Scholar 

  127. Di Giulio M. On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis. Z Naturforsch 1991; 46c:305–312.

    Google Scholar 

  128. Di Giulio M. On the origin of the genetic code. J Theor Biol 1997; 187:573–581.

    PubMed  Google Scholar 

  129. Di Giulio M. The historical factor: the biosynthetic relationships between amino acids and their physiochemical properties in the origin of the genetic code. J Mol Evol 1998; 46:615–621.

    PubMed  Google Scholar 

  130. Miseta A. The role of protein associated amino acid precursor molecules in the organization of genetic codons. Physiol Chem Phys Med NMR 1989; 21:237–242.

    PubMed  CAS  Google Scholar 

  131. Wong JT-F. Coevolution of genetic code and amino acid biosynthesis. TIBS 1981; 6:33–36.

    CAS  Google Scholar 

  132. Wong JT-F. Membership mutation of the genetic code: loss of fitness by tryptophan. Proc Natl Acad Sci USA 1983; 80:6303–6306.

    PubMed  CAS  Google Scholar 

  133. Haig D, Hurst LD. A quantitative measure of error minimization in the genetic code. J Mol Evol 1999; 49(5):708.

    PubMed  CAS  Google Scholar 

  134. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157(1):105–32.

    PubMed  CAS  Google Scholar 

  135. Freeland SJ, Hurst LD. The genetic code is one in a million. J Mol Evol 1998; 47(3):238–248.

    PubMed  CAS  Google Scholar 

  136. Friedman SM, Weinstein IB. Lack of fidelity in the translation of ribopolynucleotides. Proc Natl Acad Sci USA 1964; 52(988–996).

    PubMed  CAS  Google Scholar 

  137. Benner SA, Cohen MA, Gonnet GH. Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng 1994; 7(11):1323–32.

    PubMed  CAS  Google Scholar 

  138. Ardell DH, On error minimization in a sequential origin of the standard genetic code. J Mol Evol 1998; 47(1):1–13.

    PubMed  CAS  Google Scholar 

  139. Freeland SJ, Knight RD, Landweber LF et al. Early fixation of an optimal genetic code. Mol Biol Evol 2000; 17(4):511–518.

    PubMed  CAS  Google Scholar 

  140. Aita T, Urata S, Husimi Y. From amino acid landscape to protein landscape: analysis of genetic codes in terms of fitness landscape. J Mol Evol 2000 50(4):313–23.

    PubMed  CAS  Google Scholar 

  141. Koshi JM, Goldstein RA. Mutation matrices and physical-chemical properties: Correlations and implications. Proteins 1997; 27(3):336–44.

    PubMed  CAS  Google Scholar 

  142. Wolfenden R, Andersson L, Cullis PM et al. Affinities of amino acid side chains for solvent water. Biochemistry 1981; 20(4):849–55.

    PubMed  CAS  Google Scholar 

  143. Szathmáry E, Zintzaras E. A statistical test of hypotheses on the organization and origin of the genetic code. J Mol Evol 1992; 35:185–189.

    PubMed  Google Scholar 

  144. Tomii K, Kanehisa M. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 1996; 9(1):27–36.

    PubMed  CAS  Google Scholar 

  145. Xia X, Li WH. What amino acid properties affect protein evolution? J Mol Evol 1998; 47(5):557–64.

    PubMed  CAS  Google Scholar 

  146. Joshi NV, Korde W, Sitaramam V. Logic of the genetic code: Conservation of long-range interactions among amino acids as a prime factor. J Genet 1993; 72:47–58.

    CAS  Google Scholar 

  147. Sitaramam V. Genetic code preferentially conserves long-range interactions among the amino acids. FEBS Lett 1989; 247(1):46–50.

    PubMed  CAS  Google Scholar 

  148. Fauchere J, Pliska V. Hydrophobic parameters pi of amino acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 1983; 18(4):369–375.

    CAS  Google Scholar 

  149. Radzicka A, Young GB, Wolfenden R. Lack of water transport by amino acid side chains or peptides entering a nonpolar environment. Biochemistry 1993; 32(27):6807–9.

    PubMed  CAS  Google Scholar 

  150. Rose GD, Wolfenden R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct 1993; 22:381–415.

    PubMed  CAS  Google Scholar 

  151. Robson B, Suzuki E. Conformational properties of amino acid residues in globular proteins. J Mol Biol 1976; 107(3):327–56.

    PubMed  CAS  Google Scholar 

  152. Levitt M. Conformational preferences of amino acids in globular proteins. Biochemistry 1978; 17(20):4277–85.

    PubMed  CAS  Google Scholar 

  153. Wertz DH, Scheraga HA. Influence of water on protein structure. An analysis of the preferences of amino acid residues for the inside or outside and for specific conformations in a protein molecule. Macromolecules 1978 11(1):9–15.

    PubMed  CAS  Google Scholar 

  154. Nakashima H, Nishikawa K, Ooi T. Distinct character in hydrophobicity of amino acid compositions of mitochondrial proteins. Proteins 1990; 8(2):173–8.

    PubMed  CAS  Google Scholar 

  155. Knight RD, Freeland SJ, Landweber LF. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 1999; 24(6):241–7.

    PubMed  CAS  Google Scholar 

  156. Sjöström M, Wold S. A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. J Mol Evol 1985; 22:272–277.

    PubMed  Google Scholar 

  157. Jiménez-Montaño MA. On the syntactic structure and redundancy distribution of the genetic code. Bio Systems 1994; 32:11–23.

    PubMed  Google Scholar 

  158. Tolstrup N, Toftgard J, Engelbrecht J et al. Neural network model of the genetic code is strongly correlated to the GES scale of amino acid transfer free energies. J Mol Biol 1994; 243(5):816–20.

    PubMed  CAS  Google Scholar 

  159. Wong JT. Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 1980; 77(2):1083–1086.

    PubMed  CAS  Google Scholar 

  160. Goldman N. Further results on error minimization in the genetic code. J Mol Evol 1993; 37(6):662–4.

    PubMed  CAS  Google Scholar 

  161. Di Giulio M. The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 1989; 29:288–293.

    PubMed  Google Scholar 

  162. Di Giulio M. Genetic code origin and the strength of natural selection. J Theor Biol 2000; 205(4):659–61.

    PubMed  Google Scholar 

  163. Di Giulio M. The origin of the genetic code. Trends Biochem Sci 2000; 25(2):44.

    PubMed  Google Scholar 

  164. Di Giulio M, Capobianco MR, Medugno M. On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. J Theor Biol 1994; 168:43–51.

    PubMed  Google Scholar 

  165. Judson OP, Haydon D. The genetic code: What is it good for? J Mol Evol 1999; 49:539–550.

    PubMed  CAS  Google Scholar 

  166. Freeland SJ, Knight RD, Landweber LF. Measuring adaptation within the genetic code. Trends Biochem Sci 2000; 25(2):44–5.

    PubMed  CAS  Google Scholar 

  167. Di Giulio M. The coevolution theory of the origin of the genetic code. J Mol Evol 1999; 48(3):253–5.

    PubMed  Google Scholar 

  168. Di Giulio M, Medugno M. The robust statistical bases of the coevolution theory of genetic code origin. J Mol Evol 2000; 50(3):258–63.

    PubMed  Google Scholar 

  169. Amirnovin R. An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol 1997; 44:473–476.

    PubMed  CAS  Google Scholar 

  170. Amirnovin R, Miller SL. Response. J Mol Evol 1999; 48:253–255.

    Google Scholar 

  171. Ronneberg TA, Landweber LF, Freeland SJ. Testing a biosynthetic theory of the genetic code: Fact or artifact? Proc Natl Acad Sci USA 2000; 97(25):13690–5.

    PubMed  CAS  Google Scholar 

  172. Freeland SJ, Hurst LD. Load minimization of the code: history does not explain the pattern. Proc Roy Soc Lond B 1998, 265:1–9.

    Google Scholar 

  173. Illangasekare M, Sanchez G, Nickles T et al. Aminoacyl-RNA Synthesis Catalyzed by an RNA. Science 1995; 267:643–647.

    PubMed  CAS  Google Scholar 

  174. Illangasekare M, Yams M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci USA 1999; 96(10):5470–5.

    PubMed  CAS  Google Scholar 

  175. Illangasekare M, Yams M. A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. Rna 1999; 5(11):1482–9.

    PubMed  CAS  Google Scholar 

  176. Lee N, Bessho Y, Wei K et al. Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol. 2000; 7(1):28–33.

    PubMed  CAS  Google Scholar 

  177. Nagel GM, Doolittle RF. Phylogenetic Analysis of the Aminoacyl-tRNA Synthetases. J Mol Evol 1995; 40:487–498.

    PubMed  CAS  Google Scholar 

  178. Wetzel R. Evolution of the aminoacyl-trna synthetases and the origin of the genetic code. J Mol Evol 1995; 40:545–550.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Knight, R.D., Freeland, S.J., Landweber, L.F. (2004). Adaptive Evolution of the Genetic Code. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics