Skip to main content

Extant Variations in the Genetic Code

  • Chapter

Abstract

The discovery in the 1960s of an identical genetic code in Escherichia coli viruses and mammalian cells suggested that all living organisms use the same genetic code. The existence of a universal genetic code prompted Crick to propose the “Frozen Accident Theory” which states that the genetic code does not evolve. This theory was based on the assumption that in the last common ancestor, life-forms had reached a level of complexity that would not tolerate alterations in the identity of their codons. That is, once proteins had ac-quired a certain level of functionality, any alteration in codon identity would introduce struc-tural and functional disruption with a high probability that this would be lethal or highly detrimental.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crick FH. The origin of the genetic code. J Mol Biol 1968; 38:367–379.

    Article  PubMed  CAS  Google Scholar 

  2. Barrel BG, Bankier AT, Drouin J. A different genetic code in human mitochondria. Nature 1979; 282:189–194.

    Article  Google Scholar 

  3. Hasegawa M, Miyata T. On the antisymmetry of the amino acid code table. Origins of Life 1980; 10:265–270.

    Article  PubMed  CAS  Google Scholar 

  4. Jukes TH. Amino acid codes in mitochondria as possible clues to primitive codes. J Mol Evol 1981; 18:15–17.

    Article  PubMed  CAS  Google Scholar 

  5. Knight RD, Freeland SJ, Landweber LF. Rewiring the keyboard: Evolvability of the genetic code. Nature Rev Genet 2001; 2:49–58.

    Article  CAS  PubMed  Google Scholar 

  6. Osawa S, Jukes TH, Watanabe K et al. Recent evidence for evolution of the genetic code. Microbiol Rev 1992; 5:229–264.

    Google Scholar 

  7. Oba T, Andachi Y, Muto A et al. CGG: An unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci USA 1991; 88:921–925.

    Article  PubMed  CAS  Google Scholar 

  8. Muto A, Andachi Y, Yuzawa H et al. The organization and evolution of transfer RNA genes of Mycoplasma capricolum. Nucleic Acids Res 1990; 18:5037–5043.

    Article  PubMed  CAS  Google Scholar 

  9. Osawa S. Evolution of the Genetic Code. New York: Oxford University Press, 1995.

    Google Scholar 

  10. Schultz DW, Yarus M. On the malleability in the genetic code. J Mol Evol 1996; 42:597–601.

    Article  PubMed  CAS  Google Scholar 

  11. Yarus M, Schultz DW. Further comments on codon reassignment. J Mol Evol 1997; 45:3–6.

    Article  PubMed  CAS  Google Scholar 

  12. Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino acid usage and GC composition within and across genomes. Genome Biol 2001; 2:1–13.

    Google Scholar 

  13. Knight RD, Landweber LF, Yarus M. How mitochondria redefine the code. J Mol Evol 2001; 53:299–313.

    Article  PubMed  CAS  Google Scholar 

  14. Santos MAS, Perreau VM, Tuite MF. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J 1996; 15:5060–5068.

    PubMed  CAS  Google Scholar 

  15. Suzuki T, Ueda T, Watanabe K. Polysemous codon: A codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J 1997; 16:1122–1134.

    Article  PubMed  CAS  Google Scholar 

  16. Sharp PM, Matassi G. Codon usage and genome evolution. Curr Opin Genet Dev 1994; 4:851–860.

    Article  PubMed  CAS  Google Scholar 

  17. Muto A, Osawa S. The guanosine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 1987; 84:166–169.

    Article  PubMed  CAS  Google Scholar 

  18. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 1988; 85:2653–2657.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson AGE, Kurland CG. An extreme codon preference strategy: codon reassignment. Mol Biol Evol 1991; 8:530–544.

    Google Scholar 

  20. Anderson AGE, Kurland CG. Genomic evolution drives the evolution of the translation system. Biochem Cell Biol 1995; 73:775–787.

    Article  Google Scholar 

  21. Anderson AGE, Kurland CG. Reductive evolution of resident genomes. Trends Microbiol 1998; 6:263–268.

    Article  Google Scholar 

  22. Silva FJ, Amparo L, Moya A. Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 2001; 17:615–618.

    Article  PubMed  CAS  Google Scholar 

  23. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol 2001; 2:1–5.

    Article  Google Scholar 

  24. Watanabe K, Osawa S. tRNA sequences and variations in the genetic code. In: Soll D, RajBhandary U, eds. tRNA: Structure, Biosynthesis and Function. Washington: ASM Press, 1995:225–250.

    Google Scholar 

  25. Sternberg D, Chatzoglou E, Laforet P et al. Mitochondrial DNA transfer RNA gene sequence variations in patients with mitochondrial disorders. Brain 2001; 124:984–994.

    Article  PubMed  CAS  Google Scholar 

  26. Urbonavicius J, Qian Q, Durand JMB et al. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 2001; 20:4863–4873.

    Article  PubMed  CAS  Google Scholar 

  27. Björk GR, Jacobsson K, Nilsson K et al. A primordial tRNA modification required for the evolution of life. EMBO J 2001; 20:231–239.

    Article  PubMed  Google Scholar 

  28. Hagervall TG, Tuohy TMF, Atkins JF et al. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol 1993; 232:756–765.

    Article  PubMed  CAS  Google Scholar 

  29. Schultz DW, Yarus M. tRNA structure and ribosomal function. I. tRNA nucleotide 27–43 mutations enhance first position wobble. J Mol Biol 1994; 235:1381–1394.

    Article  PubMed  CAS  Google Scholar 

  30. Santos MAS, Cheesman C, Costa V et al. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol Microbiol 1999; 31:937–947.

    Article  PubMed  CAS  Google Scholar 

  31. Grant CM, Firoozan M, Tuite MF. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Mol Microbiol 1989; 3:215–220.

    Article  PubMed  CAS  Google Scholar 

  32. Sugita T, Nakase T. Nonuniversal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst Appl Microbiol 1999; 22:79–86.

    PubMed  CAS  Google Scholar 

  33. Murphy HS, Humayun Z. Escherichia coli cells expressing a mutant glyV (glycine tRNA) gene have a UVM-constitutive phenotype: Implications for mechanisms underlying the mutA or mutC mutator effect. J Bacteriol 1997; 179:7507–7514.

    PubMed  CAS  Google Scholar 

  34. Torkelson J, Harris RS, Lombardo MJ et al. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 1997; 16:3303–3311.

    Article  PubMed  CAS  Google Scholar 

  35. Rosche WA, Foster PL. The role of transient hypermutators in adaptive mutation in Escherichia coli. Proc Natl Acad Sci USA 1999; 96:6862–6867.

    Article  PubMed  CAS  Google Scholar 

  36. Stansfield I, Kushnirov VV, Jones KM et al. A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. Eur J Biochem 1997; 245:557–563.

    Article  PubMed  CAS  Google Scholar 

  37. Farabaugh PJ. Programmed Alternative Reading of the Genetic Code. Heidelberg: Molecular Biol ogy Intelligence Unit, Springer Verlag, 1997.

    Google Scholar 

  38. Santos MAS, Keith G, Tuite MF. Nonstandard translational events in Candida albicans mediated by an unusual tRNASer with a 5′-CAG-3′ (leucine) anticodon. EMBO J 1993; 12:607–616.

    PubMed  CAS  Google Scholar 

  39. Perreau VM, Keith G, Holmes MW et al. The Candida albicans CUG-decoding seryl-tRNA has an atypical anticodon stem-loop structure. J Mol Biol 1999; 293:1039–1053.

    Article  PubMed  CAS  Google Scholar 

  40. Yarus M. Translational efficiency of transfer RNA’s: Uses of an extended anticodon. Science 1982; 218:646–652.

    Article  PubMed  CAS  Google Scholar 

  41. Pape LK, Tzagoloff A. Cloning and characterization of the gene for the yeast cytoplasmic threonyl-tRNA synthetase. Nucleic Acids Res 1985; 13:6171–6183.

    Article  PubMed  CAS  Google Scholar 

  42. Alfonzo JP, Blanc V, Estevez AM et al. C to U editing of the anticodon of imported mitochondrial tRNATrp allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 1999; 18:7056–7062.

    Article  PubMed  CAS  Google Scholar 

  43. Zerfass K, Beier H. Pseudouridine in the anticodon G ψ A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res 1992; 20:5911–5918.

    Article  PubMed  CAS  Google Scholar 

  44. Inagaki Y, Doolitle WF. Evolution of the eukaryotic translation termination system: origins of release factors. Mol Biol Evol 2000; 17:882–889.

    PubMed  CAS  Google Scholar 

  45. Lozupone CA, Knight RD, Landweber LF. The molecular basis of nuclear code change in ciliates. Curr Biol 2001; 11:65–74.

    Article  PubMed  CAS  Google Scholar 

  46. Kervestin S, Frolova L, Kisselev L et al. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep 2001; 2:680–684.

    Article  PubMed  CAS  Google Scholar 

  47. Bertram G, Bell HA, Ritchie DW et al. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 2000; 6:1236–1247.

    Article  PubMed  CAS  Google Scholar 

  48. Inagaki Y, Blouin C, Doolittle WF et al. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain1: the evolution of stop codon specificity. Nucleic Acids Res 2002; 30:532–544.

    Article  PubMed  CAS  Google Scholar 

  49. Song H, Mugnier P, Das AK et al. The crystal structure of human eukaryotic release factor eRF1-Mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 2000; 100:311–321.

    Article  PubMed  CAS  Google Scholar 

  50. Lehman N. Molecular evolution: Please release me, genetic code. Curr Biol 2001; 11:R63–R66.

    Article  PubMed  CAS  Google Scholar 

  51. Grimm M, Brunen-Nieweler C, Junker V et al. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res 1998; 26:4557–4565.

    Article  PubMed  CAS  Google Scholar 

  52. Liang A, Brunen-Nieweler C, Muramatsu T et al. The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the eRF1 type. Gene 2001; 262:161–168.

    Article  PubMed  CAS  Google Scholar 

  53. Matsugi J, Murao K, Ishikura H. Effect of Bacillus subtilis tRNA(Trp) on readthrough rate at an opal UGA codon. J Biochem (Tokyo) 1998; 123:853–858.

    PubMed  CAS  Google Scholar 

  54. Paul L, Ferguson DJ, Krzycki JA. The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons. J Bacteriol 2000; 182:2520–2529.

    Article  PubMed  CAS  Google Scholar 

  55. Ribas de Pouplana L, Schimmel P. Aminoacyl-tRNA synthetases: Potential markers of genetic code development. Trends Biochem Sci 2001; 26:591–596.

    Article  PubMed  CAS  Google Scholar 

  56. O’Sullivan JM, Davenport JB, Tuite MF. Codon reassignment and the evolving genetic code: Problems and pit-falls in post-genome analysis. Trends in Genetics 2001; 17:20–22.

    Article  PubMed  CAS  Google Scholar 

  57. Yokogawa T, Suzuki T, Ueda T et al. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: Evolutionary implications. Proc Natl Acad Sci USA 1992; 89:7408–7411.

    Article  PubMed  CAS  Google Scholar 

  58. Tomita K, Ueda T, Watanabe K. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria. Nucleic Acids Res 1999; 27:1683–1689.

    Article  PubMed  CAS  Google Scholar 

  59. Kondow A, Suzuki T, Yokobori S et al. An extra tRNAGly (U*CU) found in ascidian mitochondria responsible for decoding nonuniversal codons AGG/AGA as glycine. Nucleic Acids Res 1999; 27:2554–2559.

    Article  PubMed  CAS  Google Scholar 

  60. Ryckelynck M, Giegé, R, Frugier, M. Yeast tRNAAsp charging accuracy is threatened by the N-terminal extension of Aspartyl-tRNA synthetase. J Biol Chem 2003; 278(11):9683–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Santos, M.A.S., Tuite, M.F. (2004). Extant Variations in the Genetic Code. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics