Skip to main content

Origin and Evolution of DNA and DNA Replication Machineries

  • Chapter
Book cover The Genetic Code and the Origin of Life

Summary

The transition from the RNA to the DNA world was a major event in the history of life. The invention of DNA required the appearance of enzymatic activities for both synthesis of DNA precursors, retro-transcription of RNA templates and replication of single- and double-stranded DNA molecules. Recent data from comparative genomics, structural biology and traditional biochemistry have revealed that several of these enzymatic activities have been invented independently more than once, indicating that the transition from RNA to DNA genomes was more complex than previously thought. The distribution of the different protein families corresponding to these activities in the three domains of life (Archaea, Eukarya, and Bacteria) is puzzling. In many cases, Archaea and Eukarya contain the same version of these proteins, whereas Bacteria contain another version. However, in other cases, such as thymidylate synthases or type II DNA topoisomerases, the phylogenetic distributions of these proteins donot follow this simple pattern. Several hypotheses have been proposed to explain these observations, including independent invention of DNA and DNA replication proteins, ancient gene transfer and gene loss, and/or nonorthologous replacement. We review all of them here, with more emphasis on recent proposals suggesting that viruses have played a major role in the origin and evolution of the DNA replication proteins and possibly of DNA itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Monod J. Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. New York: Knopf, 1971.

    Google Scholar 

  2. Watson JD, Crick FHC. The structure of DNA. Cold Spring Harbor Symp Quant Biol 1953; 18:123–113.

    PubMed  CAS  Google Scholar 

  3. Shroedinger E. What is life, the physical aspect of the living cell. Cambridge 1944.

    Google Scholar 

  4. Lazcano A, Guerrero R, Margulis L et al. The evolutionary transition from RNA to DNA in early cells. J Mol Evol 1988; 27:283–290.

    Article  PubMed  CAS  Google Scholar 

  5. Olsen GJ, Woese CR. Archaeal genomics: an overview. Cell 1997; 89:991–994.

    Article  PubMed  CAS  Google Scholar 

  6. Forterre P. 2001, Genomic and early cellular evolution. The origin of the DNA world. CR Acad Sci Paris Life Sciences 2001; 324:1067–1076.

    CAS  Google Scholar 

  7. Forterre P. Origin of DNA and DNA genomes. Curr Opin in Microbiol 2002; 5:525–532.

    Article  CAS  Google Scholar 

  8. Jacob F. Evolution and thinkering. Science 1997; 196:1161–1166.

    Article  Google Scholar 

  9. Poole AM, Logan DT, Sjöberg B-M. The evolution of ribonucleotide reductase: much ado about oxygen. J Mol Evol 2002; 55: 180–196.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi I, Marmur J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature 1963; 197:794–5

    Article  PubMed  CAS  Google Scholar 

  11. Kornberg A, Baker T. DNA replication. New York: Freeman and Company, 1992.

    Google Scholar 

  12. Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 2002; 296:1270–1273.

    Article  PubMed  CAS  Google Scholar 

  13. Freeland SJ, Knight R, Landweber LF. Do proteins predate DNA? Science 1999; 286:690–692.

    Article  PubMed  CAS  Google Scholar 

  14. Poole A, Penny D, Sjöberg B-M. Methyl-RNA: Evolutionary bridge between RNA and DNA? Chemistry and Biology 2000; 7:207–216.

    Article  Google Scholar 

  15. Poole A, Penny D, Sjöberg B-M. Confounded cytosine! Tinkering and the evolution of DNA. Nature Rev Mol Cell Biol 2001; 2:147–151.

    Article  CAS  Google Scholar 

  16. Stubbe JA. Ribonucleotide reductases: The link between an RNA and a DNA world? Current Opin Structural Biol 2000; 10:731–773.

    Article  CAS  Google Scholar 

  17. Eklund H, Uhin U, Farnegardh M et al. Structutre and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 2001; 77:177–268.

    Article  PubMed  CAS  Google Scholar 

  18. Fontecave M, Mulliez E, Logan DT. Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog Nucleic Acid Res and Mol Biol 2002; 72:95–128.

    Article  CAS  Google Scholar 

  19. Myllykallio H, Lipowski G, Leduc D et al. An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis. Science 2002; 297:105–107.

    Article  PubMed  CAS  Google Scholar 

  20. Murzin AG. DNA building blocks reinvented. Science 2002; 297:61–62.

    Article  PubMed  CAS  Google Scholar 

  21. Song HK, Sohn SH, Suh SW. Crystal structure of deoxycytidylate hydroxymethylase from bacteriophage T4, a component of the deoxyribonucleoside triphosphate-synthesizing complex. EMBO J 1999; 18:1104–1113.

    Article  PubMed  CAS  Google Scholar 

  22. Lazcano A, Valverde V, Hernandez G et al. On the early emergence of reverse transcription: theeoretical basis and experimental evidence. J Mol Evol 1992; 35:524–536.

    Article  PubMed  CAS  Google Scholar 

  23. Wintersberger U, Wintersberger E. RNA makes DNA: A speculative view of the evolution of DNA replication mechanisms. Trends in Genet 1987; 3:198–202.

    Article  CAS  Google Scholar 

  24. Ng KK, Cherney MM, Vazquez AL et al. Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 2002; 277:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  25. Filee J, Forterre P, Sen-Lin T et al. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol 2002; 54:763–773.

    Article  PubMed  CAS  Google Scholar 

  26. Forterre P. New hypotheses about the origins of viruses, prokaryotes and eukaryotes. In: Trân Thanh Van JK, Mounolou JC, Shneider J and Me Kay C, eds. Gif-sur-Yvette, France: Editions Frontières, 1992:221–234.

    Google Scholar 

  27. Bamford DH, Burnett RM, Stuart DI. Evolution of viral structure. Theor Popul Biol 2002; 61:461–470.

    Article  PubMed  Google Scholar 

  28. Peng X, Blum H, Qhe Q et al. Sequence and replication of genomes of the archaeal Rudivirus SIRV1 and SIRV2: relationships to the archaeal Lipothrixvirus SIFV and some eukaryal viruses. Virology 2001; 291:226–234.

    Article  PubMed  CAS  Google Scholar 

  29. Benson SD, Bamford JKH, Bamford D et al. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 1999; 98:825–833.

    Article  PubMed  CAS  Google Scholar 

  30. Butcher SJ, Grimes JM, Makeyev EV et al. A mechanism for initiating RNA-dependent RNA polymerization. Nature 2001; 410:235–240.

    Article  PubMed  CAS  Google Scholar 

  31. De Pamphilis ML. DNA replication in eukaryotic cells. Cold spring Harbor Laboratory Press 1996.

    Google Scholar 

  32. Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 1992; 20:3279–3285.

    Article  PubMed  CAS  Google Scholar 

  33. Bocquier AA, Liu L, Cann IK et al. Archaeal primase: bridging the gap between RNA and DNA polymerases. Curr Biol 2001; 11:452–456.

    Article  PubMed  CAS  Google Scholar 

  34. Ohmori H, Friedberg EC, Fuchs RP et al. The Y-family of DNA polymerases. Mol Cell 2001; 8:7–8.

    Article  PubMed  CAS  Google Scholar 

  35. Kirk BW, Kuchta RD. Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology. Biochemistry 1999; 38:7727–7736.

    Article  PubMed  CAS  Google Scholar 

  36. Kato M, Frick DN, Lee J et al. A complex of the bacteriophage T7 primase-helicase and DNA polymerase directs primer utilization. J Biol Chem 2001; 276:21809–1820.

    Article  PubMed  CAS  Google Scholar 

  37. Lehman IR, Boehmer PE. Replication of herpes simplex virus DNA. J Biol Chem 1999; 274:28059–18062.

    Article  PubMed  CAS  Google Scholar 

  38. Dracheva S, Koonin EV, Crute JJ. Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. J Biol Chem 1995; 270:14148–14153.

    Article  PubMed  CAS  Google Scholar 

  39. Trakselis MA, Mayer MU, Ishmael FT et al. Dynamic protein interactions in the bacteriophage T4 replisome. Trends Biochem Sci. 2001; 26:566–572. Review.

    Article  PubMed  CAS  Google Scholar 

  40. Mesyanzhinov VV, Robben J, Grymonprez B et al. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol 2002; 317:1–19.

    Article  PubMed  CAS  Google Scholar 

  41. Lakshminarayan MI, Aravind L, Koonin E. Common origin of four large families of large eukaryotic DNA viruses. J Virol 2001; 75:11720–11734.

    Article  Google Scholar 

  42. Waga S, Stillman B. The 46, 48DNA replication fork in eukaryotic cells. Annu Rev Biochem 1998; 67:721–751.

    Article  PubMed  CAS  Google Scholar 

  43. Keck JL, Berger JM. DNA replication at high resolution. Chem Biol 2000: 7(3):R63–71

    Article  PubMed  CAS  Google Scholar 

  44. Bohlke K, Pisani FM, Rossi M et al. Archaeal DNA replication: spotlight on a rapidly moving field. Extremophiles 2002; 6:1–14.

    Article  PubMed  CAS  Google Scholar 

  45. Matsunaga F, Forterre P, Ishino Y et al. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA 2001; 98:11152–11157.

    Article  PubMed  CAS  Google Scholar 

  46. Edgell DF, Doolittle WF. Archaea and the origin[s] of DNA replication proteins. Cell 1997; 89:995–998.

    Article  PubMed  CAS  Google Scholar 

  47. Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 1996; 93:10268–10273.

    Article  PubMed  CAS  Google Scholar 

  48. Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently ? Nucleic Acids Res 1999; 27:3389–3401.

    Article  PubMed  CAS  Google Scholar 

  49. Myllykallio H, Lopez P, Lopez-Garcia P et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 2000; 288:2212–2215.

    Article  PubMed  CAS  Google Scholar 

  50. Zivanovic Y, Lopez P, Philippe H et al. Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 2002; 30:1902–1910.

    Article  PubMed  CAS  Google Scholar 

  51. Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 2002; 52:7–76.

    PubMed  CAS  Google Scholar 

  52. Forterre P. Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol Microbiol 1999; 33:457–465.

    Article  PubMed  CAS  Google Scholar 

  53. Villarreal LP, DeFilippis A. Hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 2000; 74:7079–7084.

    Article  PubMed  CAS  Google Scholar 

  54. Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 2001; 52:419–425.

    PubMed  CAS  Google Scholar 

  55. Bell PJL. Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? J Mol Evol 200; 5:251–256.

    Google Scholar 

  56. Keck JL, Roche DD, Lynch AS et al. Structure of the RNA polymerase domain of E. coli primase. Structure of the RNA polymerase domain of E. coli primase. Science 2000; 287:2482–2486.

    Article  PubMed  CAS  Google Scholar 

  57. Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 2002; 21:4763–4773.

    Article  PubMed  CAS  Google Scholar 

  58. Woese CR, Fox GE. The concept of cellular evolution. J Mol Evol 1977; 1:1–6.

    Article  Google Scholar 

  59. Forterre P, Benhachenou N, Confalonieri F et al. The nature of the last universal ancestor and the universal tree of life, still open questions. Biosystem 1993; 28:15–32-LUCA DNA.

    Article  Google Scholar 

  60. Gadelle D, Filée J, Bulher C et al. Phylogenomics of type II DNA topoisomerases, Bioassay 2003; 25:232–242.

    Article  CAS  Google Scholar 

  61. MacNaughton TB, Shi ST, Modahl LE et al. Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA Polymerases. J Virol 2002; 76:3920–3927.

    Article  PubMed  CAS  Google Scholar 

  62. Moraleda G, Taylor J. Host RNA polymerase requirements for transcription of the human hepatitis delta virus genome. J Virol 2001; 75:10161–10169.

    Article  PubMed  CAS  Google Scholar 

  63. Wang H, Di Gate RJ, Seeman NC. An RNA topoisomerase. Proc Natl Acad Sci USA 1996; 93:9477–9482.

    Article  PubMed  CAS  Google Scholar 

  64. Davey MJ, Jeruzalmi D, Kuriyan J et al. Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 2002; 3:826–835.

    Article  PubMed  CAS  Google Scholar 

  65. Brinckman H, Philippe H. Archaea sister group of Bacteria ? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 1999; 16:817–825.

    Google Scholar 

  66. Forterre P, Philippe H. Where is the root of the universal tree of life? Bioessays 1999; 21:871–879.

    Article  PubMed  CAS  Google Scholar 

  67. Gribaldo S, Philippe H. Ancient phylogenetic relationships. Theor Pop Biol 2002; 61:391–408.

    Article  Google Scholar 

  68. Lopez-Garcia P, Moreira D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 1999; 24:88–93.

    Article  PubMed  CAS  Google Scholar 

  69. Bergerat A, de Massy B, Gadelle D et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 1997; 386:414–417.

    Article  PubMed  CAS  Google Scholar 

  70. Wadsworth RI, White MF. Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 2001; 29:914–920.

    Article  PubMed  CAS  Google Scholar 

  71. Myllykallio H, Forterre P. Mapping of a chromosome replication origin in an archaeon: Response. Trends Microbiol 2000; 8:537–539.

    Article  PubMed  CAS  Google Scholar 

  72. Makiniemi M, Pospiech H, Kilpelainen S et al. A novel family of DNA-polymerase-associated B subunits. Trends Biochem Sci 1999; 24:14–16.

    Article  PubMed  CAS  Google Scholar 

  73. Moreira D. Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages implications for the origin of bacterial replication machinery. Mol Microbiol 2000; 35:1–5.

    Article  PubMed  CAS  Google Scholar 

  74. MacNeill SA. DNA replication: partners in the Okazaki two-step. Current Biol 2001; 11:R842–R844.

    Article  CAS  Google Scholar 

  75. Matsunaga F, Norais C, Forterre P et al. Identification of short ‘eukaryotic’ Okazaki fragments synthesized from a prokaryotic replication origin EMBO Report 2003; 4:154–158.

    Article  CAS  Google Scholar 

  76. O’Donnell M, Jeruzalmi D, Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr Biol 2000; 11:R935–R946.

    Article  Google Scholar 

  77. Dervyn E, Suski C, Daniel R et al. Two essential DNA polymerases at the bacterial replication fork. Science 2001; 294:1716–1719.

    Article  PubMed  CAS  Google Scholar 

  78. Lipps G, Röther S, Hart C et al. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 2003; 22:2516–2525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Forterre, P., Filée, J., Myllykallio, H. (2004). Origin and Evolution of DNA and DNA Replication Machineries. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics