Skip to main content

The Early Earth

  • Chapter
  • 538 Accesses

Abstract

The Earth is so far the only place in the Universe where life is known to exist. Is the Earth special, or are there other places both in our own solar system and beyond where life may have originated and either became extinct or still exists today? Hopefully, in the not to distant future we may find out. During the coming decades, spacecraft will search for evidence of life on Mars and Jupiter s moon Europa, which are considered to be the most promising places for the existence of extant or extinct extraterrestrial life within our solar sys-tem. Using remote sensing techniques, we will also begin to look for signs of life’s chemistry on the extrasolar planets, which seem to be omnipresent companions of many main sequence stars. If the conditions that resulted in the origin of life on Earth are common throughout the Universe, it seems almost certain that life must exist elsewhere. However, to evaluate whether the Earth is a unique place, or simply an average rocky planet around an average star, we must access what the Earth was like before life began and how these conditions contributed to the processes thought to be involved in the origin of life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see: McCray R. Supernova 1987A revisited. Annu Rev Astron Astrophys 1993; 31:175–216.

    Article  CAS  Google Scholar 

  2. For pictures and press releases see: http://oposite.stsci.edu/pubinfo/pictures.html

    Google Scholar 

  3. Schneider G, Smith BA, Becklin EE et al. NICMOS imaging of the HR 4796A circumstellar disk. Astrophys J 1999; 513:L127–L130.

    Article  Google Scholar 

  4. Storm SE. The early evolution of stars. Rev Mex Astron Astrofis 1994; 29:23–29.

    Google Scholar 

  5. Natta A, Grinin VP, Mannings V. Properties and evolution of disks around premain-sequence stars of intermediate mass. In: Mannings V, Boss AP, Russell SS, eds. Protostars and Planets IV. Tucson, University of Arizona Press, 2000:559–587.

    Google Scholar 

  6. Marcy GW. Personal communication.

    Google Scholar 

  7. Marcy GW, Cochran WD, Mayor M. Extrasolar planets around main-sequence stars. In: Mannings V, Boss AP, Russell SS, eds. Protostars and Planets IV. Tucson, University of Arizona Press, 2000:1285–1311.

    Google Scholar 

  8. Wadhwa M, Russell SS. Timescales of accretion and differentiation in the early solar system: The meteoritic record. In: Mannings V, Boss AP, Russell SS, eds. Protostars and Planets IV. Tucson, University of Arizona Press, 2000:995–1018.

    Google Scholar 

  9. Lee DC, Halliday AN. Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature 1995; 378:771–774.

    Article  CAS  Google Scholar 

  10. Halliday AN, Rehkämper M, Lee DC et al. Early evolution of the Earth and the Moon: New constraints for Hf-W isotope geochemistry. Earth Planet Sci Lett 1996; 142:75–89.

    Article  CAS  Google Scholar 

  11. Lee DC, Halliday AN. Core formation on Mars and differentiated asteroids. Nature 1997; 388:854–857.

    Article  CAS  Google Scholar 

  12. Hartmann WK, Philips RJ, Taylor GJ. Origin of the Moon. Houston, Lunar and Planetary Institute, 1986.

    Google Scholar 

  13. Lee DC, Halliday AN, Snyder GA et al. Age and origin of the Moon. Science 1997; 278:1098–1103.

    Article  CAS  Google Scholar 

  14. Maher KA, Stevenson DJ. Impact frustration of the origin of life. Nature 1988;331:612–614.

    Article  PubMed  CAS  Google Scholar 

  15. Bowring SA, Williams IS. Prisocan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 1999; 134:3–16.

    Article  CAS  Google Scholar 

  16. Wilde SA, Valley JW, Peck WH et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001; 409:175–178.

    Article  PubMed  CAS  Google Scholar 

  17. Mojzsis SJ, Arrhenius G, McKeegan KD et al. Evidence for life on Earth before 3,800 million years ago. Nature 1996; 384:55–59.

    Article  PubMed  CAS  Google Scholar 

  18. Kasting JF. Earth’s early atmosphere. Science 1993; 259:920–926.

    Article  PubMed  CAS  Google Scholar 

  19. Kasting JF. Early evolution of the atmosphere and ocean. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V, eds. The Chemistry of Life’s Origin. The Netherlands: Kluwer Academic Publishers, 1993:149–176.

    Google Scholar 

  20. Meier R, Owen TC, Matthews HE et al. A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). Science 1998; 279:842–844.

    Article  PubMed  CAS  Google Scholar 

  21. Gilliland RL. Solar evolution. Global Planet Change 1989; 1:35–55.

    Article  Google Scholar 

  22. Bada JL, Bigham C, Miller SL. Impact melting of frozen oceans on the early Earth: Implications for the origin of life. Proc Natl Acad Sci USA 1994; 91:1248–1250.

    Article  PubMed  CAS  Google Scholar 

  23. Lazcano A, Miller SL. The origin and early evolution of life: Prebiotic chemistry, the preRNA world, and time. Cell 1996; 85:793–798.

    Article  PubMed  CAS  Google Scholar 

  24. Oparin AI. Proiskhozhdenie zhiny. Moscow, 1924, translated as “The Origin of Life”. In: Bernal JD, ed. The Origin of Life. Cleveland and New York: 1957:Appendix I, 199–234.

    Google Scholar 

  25. Haldane JBS. Rationalist annual (1929). Reprinted. In: Bernal JB, ed. The Origin of Life. Cleve land and New York, 1957:243–249.

    Google Scholar 

  26. Urey HC. The planets. New Haven: Yale University Press, 1952.

    Google Scholar 

  27. Miller SL. A production of amino acids under possible primitive Earth conditions. Science 1952; 117:528–529.

    Article  Google Scholar 

  28. Miller SL. Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 1955; 77:2351–2361.

    Article  CAS  Google Scholar 

  29. Miller SL. The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 1957; 23:480–489.

    Article  PubMed  CAS  Google Scholar 

  30. Strecker A. Über die künstliche Bildung der Milchsäure und einem neuen dem Glycocoll homologen Körper. Ann Chem 1850; 75:27.

    Article  Google Scholar 

  31. Oró J. Synthesis of adenine from ammonium cyanide. Biochim Biophys Res Commun 1960;2:407–412.

    Article  Google Scholar 

  32. Oró J, Kimball AP. Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys 1961; 94:217–227.

    Article  PubMed  Google Scholar 

  33. Yuasa S, Flory D, Basile B et al. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J Mol Evol 1984; 21:76–80.

    Article  PubMed  CAS  Google Scholar 

  34. Levy M, Miller SL. Oró J. Production of guanine from NH4CN polymerizations. J Mol Evol 1999; 49:165–168.

    Article  PubMed  CAS  Google Scholar 

  35. Miller SL, Urey HC. Organic compound synthesis on the primitive earth. Science 1959; 130:245–251.

    Article  PubMed  CAS  Google Scholar 

  36. Schlesinger G, Miller SL. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino Acids. J Mol Evol 1983; 19:376–382.

    Article  PubMed  CAS  Google Scholar 

  37. Ferris JP, Joshi PC, Edelson EH et al. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive Earth. J Mol Evol 1978; 11:293–311.

    Article  PubMed  CAS  Google Scholar 

  38. Holm NG, Andersson EM. Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal vents: A perspective. Planet Space Sci 1995; 43:153–159.

    Article  PubMed  CAS  Google Scholar 

  39. Shock EL. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosphere 1990; 20:331–367.

    Article  CAS  Google Scholar 

  40. Kelley DS, Karson JA, Blackman DK et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 2001; 241:145–149.

    Article  Google Scholar 

  41. Bernhardt G, Lüdemann HD, Jaenicke R et al. Biomolecules are unstable under “black smoker” conditions. Naturwissenschaften 1984; 71:583–586.

    Article  CAS  Google Scholar 

  42. Miller SL, Bada JL. Submarine hot springs and the origin of life. Nature 1988; 334:609–611.

    Article  PubMed  CAS  Google Scholar 

  43. Lazcano A. The tempo and mode(s) of prebiotic evolution. In: Cosmovici CB, Bowyer S, Wertheimer D, eds. Astronomical and biochemical origins and the search for life in the universe. Editrice Compositori, 1997: 70–80.

    Google Scholar 

  44. Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 1992; 355:125–132.

    Article  PubMed  CAS  Google Scholar 

  45. Botta O, Bada JL. Extraterrestrial organic compounds in meteorites. Surv Geophys 2002; 23:411–467.

    Article  Google Scholar 

  46. Van der Velden W, Schwartz AW. Search for purines and pyrimidines in the Murchison meteorite. Geochim Cosmochim Acta 1977; 41:961–968.

    Article  Google Scholar 

  47. Stoks PG, Schwartz AW. Uracil in carbonaceous meteorites. Nature 1979; 282:709–710.

    Article  CAS  Google Scholar 

  48. Stoks PG, Schwartz AW. Nitrogen-heterocyclic compounds in meteorites: Significance and mechanisms of formation. Geochim Cosmochim Acta 1981; 45:563–569.

    Article  CAS  Google Scholar 

  49. Stoks PG, Schwartz AW. Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 1982; 46:309–315.

    Article  CAS  Google Scholar 

  50. Ehrenfreund P, Glavin DP, Botta O et al. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proc Natl Acad Sci USA 2001; 98:2138–2141.

    Article  PubMed  CAS  Google Scholar 

  51. Egholm M, Buchardt O, Nielsen PE et al. Peptide Nucleic Acid (PNA). Oligonucleotide Analogues with an Achiral Peptide Backbone. J Am Chem Soc 1992; 114:1895–1897.

    Article  CAS  Google Scholar 

  52. Nelson KE, Levy M, Miller SL. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 2000; 97:3868–3871.

    Article  PubMed  CAS  Google Scholar 

  53. Ferris JP, Hill Jr AR, Liu R et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 1996; 381:59–61.

    Article  PubMed  CAS  Google Scholar 

  54. Wächtershäuser G. Life as we don’t know it. Science 2000; 289:1307–1308.

    Article  PubMed  Google Scholar 

  55. Huber C, Wächtershäuser G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 1997; 245:245–247.

    Article  Google Scholar 

  56. Cody GD, Boctor NZ, Filley TR et al. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 2000; 289:1337–1340.

    Article  PubMed  CAS  Google Scholar 

  57. Bada JL, Lazcano A. Some Like It Hot, but Not the First Biomolecules. Science 2002; 296:1982–1983.

    Article  PubMed  CAS  Google Scholar 

  58. Gold T. The deep hot biosphere. New York: Springer-Verlag, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Botta, O., Bada, J.L. (2004). The Early Earth. In: The Genetic Code and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/0-387-26887-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-26887-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47843-7

  • Online ISBN: 978-0-387-26887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics