Skip to main content

The Biogenesis and Cell Biology of Peroxisomes in Human Health and Disease

  • Chapter
The Biogenesis of Cellular Organelles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1150 Accesses

Abstract

Recent results have demonstrated that the molecular mechanisms of peroxisomal membrane biogenesis and the post-translational import of proteins into the organelle do not follow those paradigms established for other subcellular organelles. As such, we have much to learn about the peroxisome, and the human diseases that occur as a result of its malfunction. In this review, we describe how peroxisomes arise through these seemingly non-conventional processes, specifically focusing on how the organelle membrane assembles its constituent proteins, and how appropriate enzymes are imported. Particular emphasis is placed on identifying the role of specific peroxins at each step in the biosynthetic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhodin J. Correlation of ultrastructure organization and function in normal and experimentally treated proximal convoluted tubule cells of the mouse kidney. Doctoral thesis, Karolinska Institute, Stockholm 1954.

    Google Scholar 

  2. de Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev 1966; 46:323–357.

    PubMed  Google Scholar 

  3. Reddy JK, Mannaerts GP. Peroxisomal lipid metabolism. Ann Rev Nutr 1994; 14:343–370.

    Article  CAS  Google Scholar 

  4. Krisans SK. Cell compartmentalization of cholesterol biosynthesis. In: Reddy JK, Suga T, Mannaerts GP et al, eds. Peroxisomes: Biology and role in toxicology and disease. New York: New York Academy of Sciences, 1996:142–164

    Google Scholar 

  5. Mannaerts GP, Van Veldhoven PP, Casteels M. Peroxisomal lipid degradation via β-and α-oxidation in mammals. Cell Biochem Biophys 1999; 31:321–335

    Article  Google Scholar 

  6. Ishii H, Fukumori N, Horie S et al. Effects of fat content in the diet on hepatic peroxisomes of the rat. Biochem Biophys Acta 1980; 617:1–11.

    PubMed  CAS  Google Scholar 

  7. Fringes B, Reith A. Time course of peroxisome biogenesis during adaptation to mild hyperthyroidism in rat liver: A morphometric, stereologic study by electron microscope. Lab Invest 1982; 47:19–26.

    PubMed  CAS  Google Scholar 

  8. Horie S, Ishii H, Sugar T. Changes in peroxisomal fatty acid oxidation in the diabetic rat liver. J Biochem 1981; 90:1691–1696.

    PubMed  CAS  Google Scholar 

  9. Reddy JK, Azarnoff DL, Hignite CE. Hypolipidaemic hepatic peroxisome proliferators from a novel class of chemical carcinogens. Nature 1980; 283:397–398.

    Article  PubMed  CAS  Google Scholar 

  10. Bremer J, Osmundsen H, Christiansen RZ et al. Methods Enzymol 1981; 72:516–517.

    Google Scholar 

  11. Lazarow PB, de Duve C. The synthesis and turnover of rat liver peroxisomes: Intracellular pathway of catalase synthesis. J Cell Biol 1973; 59:507–524.

    Article  PubMed  CAS  Google Scholar 

  12. Singh I. Mammalian peroxisomes: Metabolism of oxygen and reactive oxygen species. In: Reddy JK, Suga T, Mannaerts GP et al, eds. Peroxisomes: Biology and role in toxicology and disease. New York: New York Academy of Sciences, 1996:612–627.

    Google Scholar 

  13. Lazarow PB, Fujiki Y. Biogenesis of Peroxisomes. Ann Rev Cell Biol 1985; 1:489–530.

    PubMed  CAS  Google Scholar 

  14. Breidenbach RW, Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 1967; 27:462–469.

    Article  PubMed  CAS  Google Scholar 

  15. Opperdoes FR, Borst P. Localisation of nine glycolytic enzymes in a microbody-like organelle in Trypanosoam brucei: The glycosome. FEBS Lett 1977; 80:360–364.

    Article  PubMed  CAS  Google Scholar 

  16. Moser HW, Begin A, Cornblath D. Peroxisomal disorders. Biochem Cell Biol 1991; 69:463–474.

    Article  PubMed  CAS  Google Scholar 

  17. Motley AM, Hettema EH, Distel B et al. Differential protein import deficiencies in human peroxisome assembly disorders. J Cell Biol 1994; 125:755–767.

    Article  PubMed  CAS  Google Scholar 

  18. Goldfisher S, Collins J, Rapin I et al. Peroxisome abnormalities in metabolic diseases. J Pediatr 1986; 108:25–32.

    Article  Google Scholar 

  19. Gould SJ, Valle D. Peroxisome biogenesis disorders: Genetics and cell biology. Trends Genet 2000; 16:340–345.

    Article  PubMed  CAS  Google Scholar 

  20. Zellweger H. Peroxisomes and peroxisomal disorders. Alab J Med Sci 1988; 25:54–58.

    CAS  Google Scholar 

  21. Lazarow PB, Black V, Shio H et al. Zellweger syndrome: Biochemical and morphological studies on two patients treated with clofibrate. Ped Res 1985; 19:1356–1364.

    CAS  Google Scholar 

  22. Suzuki Y, Shimozawa N, Orii T et al. Molecular analysis of peroxisomal beta-oxidation enzymes in infants with Zellweger syndrome and Zellweger-like syndrome: Further heterogeneity of the peroxisomal disorder. Clin Chem Acta 1988; 172:65–76.

    Article  CAS  Google Scholar 

  23. Wanders PA, Kos M, Roest B et al. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome. Biochem Biophys Res Commun 1984; 123:1054–1061.

    Article  PubMed  CAS  Google Scholar 

  24. Subramani S, Koller A, Snyder WB. Import of peroxisomal matrix and membrane proteins. Ann Rev Biochem 2000; 69:399–418.

    Article  PubMed  CAS  Google Scholar 

  25. Santos MJ, Imanaka T, Shio H et al. Peroxisomal membrane ghosts in Zellweger syndrome — aberrant organelle assembly. Science 1988; 239:1536–1538.

    Article  PubMed  CAS  Google Scholar 

  26. Santos MJ, Imanaka T, Shio H et al. Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J Biol Chem 1988; 263:10502–10509.

    PubMed  CAS  Google Scholar 

  27. Lazarow PB, Fujiki Y, Small GM et al. Presence of the peroxisomal 22-kDa integral membrane protein in the liver of a person lacking recognizable peroxisomes (Zellweger syndrome). Proc Nat Acad Sci USA 1986; 83:9193–9196.

    Article  PubMed  CAS  Google Scholar 

  28. Small GM, Santos MJ, Imanaka T et al. Peroxisomal integral membrane proteins are present in livers of patients with Zellweger syndrome, infantile Refsum’s disease and X-linked adrenoleukodystrophy. J Inher Metab Dis 1988; 11:358–371.

    Article  PubMed  CAS  Google Scholar 

  29. Novikoff AB, Shin WY. The endoplasmic reticulum in the Golgi zone and its relation to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J Microscopy 1964; 3:187–206.

    Google Scholar 

  30. Fujiki Y, Fowler S, Shio H et al. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: Comparison with endoplasmic reticulum. J Cell Biol 1982; 93:103–110.

    Article  PubMed  CAS  Google Scholar 

  31. Kunau WH, Erdmann R. Peroxisome biogenesis: Back to the endoplasmic reticulum. Curr Biol 1998; 8:R299–R302.

    Article  PubMed  CAS  Google Scholar 

  32. Titorenko VI, Rachubinski RA Dynamics of peroxisome assembly and function. Trends Cell Biol 2001; 11:22–29.

    Article  PubMed  CAS  Google Scholar 

  33. Wendel FP, Berger EP. On the quantitative stereomorphology of microbodies in rat hepatocytes. J Ultrastruct Res 1975; 51:153–165.

    Article  Google Scholar 

  34. Yamamoto K, Fahimi HD. Three-dimensional reconstruction of a peroxisomal reticulum in regeneration rat liver: Evidence of interconnections between heterogenous segments. J Cell Biol 1987; 105:713–722.

    Article  PubMed  CAS  Google Scholar 

  35. Yakota S, Himeno M, Kato K. Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-emylhexyl)-phthalate treatment. III. Fusion of early autophagosomes with lysosomal compartments. Eur J Cell Biol 1995; 66:15–24.

    Google Scholar 

  36. Baerends RJS, Rasmussen SW, Hillbrands RE et al. The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisomal assembly and integrity. J Biol Chem 1996; 271:8887–8894.

    Article  PubMed  CAS  Google Scholar 

  37. Ghaedi K, Tamura S, Okumoto K et al. The peroxin Pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 2000; 11:2085–2102.

    PubMed  CAS  Google Scholar 

  38. Purdue PE, Lazarow PB. Peroxisome biogenesis. Ann Rev Cell Dev Biol 2001; 17:701–752.

    Article  CAS  Google Scholar 

  39. Muntau AC, Mayerhofer PU, Paton BC et al. Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet 2000; 67:967–975.

    Article  PubMed  CAS  Google Scholar 

  40. Soukupova M, Sprenger C, Gorgas K et al. Identification and characterization of the human peroxin PEX3. Eur J CeU Biol 1999; 78:357–374.

    CAS  Google Scholar 

  41. Sacksteder KA, Jones JM, South ST et al. PEX19 binds multiple peroxisomal membrane proteins, is predominandy cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 2000; 148:931–44.

    Article  PubMed  CAS  Google Scholar 

  42. Fransen M, Wylin T, Brees C et al. Human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol Cell Biol 2001; 21:4413–4424.

    Article  PubMed  CAS  Google Scholar 

  43. Snyder WB, Koller A, Choy AJ et al. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. J Cell Biol 2000; 149:1171–1177.

    Article  PubMed  CAS  Google Scholar 

  44. James GL, Goldstein JL, Pathak RK et al. PxF, a prenykted protein of peroxisomes. J Biol Chem 1994; 269:14182–14190.

    PubMed  CAS  Google Scholar 

  45. Snyder WB, Faber KN, Wenzel TJ et al. Pex19 interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. Mol Cell Biol 1999; 10:1745–1761.

    CAS  Google Scholar 

  46. South ST, Gould SJ. Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 1999; 144:255–266.

    Article  PubMed  CAS  Google Scholar 

  47. Passreiter M, Lay D, Frank R et al. Peroxisomal biogenesis: Involvement of ARF and coatomer. J Cell Biol 1998; 141:373–383.

    Article  PubMed  CAS  Google Scholar 

  48. Letourneur F, Gaynor EC, Hennecke S et al. Coatomer is essential in retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994; 79:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  49. Verheyden K, Fransen M, Van Veldhoven BB et al. Presence of small GTP-binding proteins in the peroxisomal membrane. Biochem Biophys Acta 1992; 1109:48–54.

    PubMed  CAS  Google Scholar 

  50. Abe I, Okumoto K, Tamura S et al. Clofibrate-inducible, 28-kDa peroxisomal membrane protein is encoded by Pex11. FEBS Lett 1998; 431:468–472.

    Article  PubMed  CAS  Google Scholar 

  51. South ST, Sacksteder KA, Li XL et al. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 2000; 149:1345–1359.

    Article  PubMed  CAS  Google Scholar 

  52. Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 1998; 78:171–188

    PubMed  CAS  Google Scholar 

  53. Elgersma Y, Tabak HF. Proteins involved in peroxisome biogenesis and functioning. Biochem Biophys Acta 1996; 1286:269–283.

    PubMed  CAS  Google Scholar 

  54. Gould SJ, Keller GA, Hosken N et al. A conserved tripeptide sends proteins to peroxisomes. J Cell Biol 1989; 108:1657–1664.

    Article  PubMed  CAS  Google Scholar 

  55. Purdue PE, Lazarow PB. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 1996; 134:849–862.

    Article  PubMed  CAS  Google Scholar 

  56. Osumi T, Tsukamoto T, Hata S et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Comm 1991; 181:947–954.

    Article  PubMed  CAS  Google Scholar 

  57. Swinkels BW, Gould SJ, Bodnar AG et al. A novel, cleavable peroxisome targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 1991; 10:3255–3262.

    PubMed  CAS  Google Scholar 

  58. Braverman N, Dodt G, Gould SJ et al. An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into the peroxisome. Human Mol Genet 1998; 7:1195–1205.

    Article  CAS  Google Scholar 

  59. Otera H, Tateishi K, Okumoto K et al. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: Studies with PEX5-defective CHO cell mutants. Mol Cell Biol 1998; 18:388–399.

    PubMed  CAS  Google Scholar 

  60. Dock G, Braverman N, Wong CS et al. Mutations in the PTS1 receptor gene, PXR 1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 1995; 9:115–125.

    Article  Google Scholar 

  61. Otera H, Harano T, Honsho M et al. The mammalian peroxin, Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p·PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 2000; 275:21703–21714.

    Article  PubMed  CAS  Google Scholar 

  62. Matsumura T, Otera H, Fujiki Y. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolished peroxisome targeting signal type 2 protein import in mammals. J Biol Chem 2000; 275:21715–21721.

    Article  PubMed  CAS  Google Scholar 

  63. Shimizu N, Itoh R, Hirono Y et al. The peroxin Pex14p: CDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J Biol Chem 1999; 274:12593–12604.

    Article  PubMed  CAS  Google Scholar 

  64. Albertini M, Rehling P, Erdmann R et al. Pex14p a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 1997; 89:83–92.

    Article  PubMed  CAS  Google Scholar 

  65. Fransen M, Terlecky SR, Subramani S. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc Natl Acad Sci USA 1998; 95:8087–8092.

    Article  PubMed  CAS  Google Scholar 

  66. Urquhart AJ, Kennedy D, Gould SJ et al. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 2000; 275:4127–4136.

    Article  PubMed  CAS  Google Scholar 

  67. Chang CC, Warren DS, Sacksteder KA et al. PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 1999; 147:761–774.

    Article  PubMed  CAS  Google Scholar 

  68. Dodt G, Gould SJ. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 1996; 135:1763–1774.

    Article  PubMed  CAS  Google Scholar 

  69. Gould SJ, Collins CS. Peroxisomal-protein import: Is it really that complex? Nat Rev Mol Cell Biol 2002; 3:382–389.

    Article  PubMed  CAS  Google Scholar 

  70. Terlecky SR, Legakis JE, Hueni SE et al. Quantitative analysis of peroxisomal protein import in vitro. Exp Cell Res 2001; 263:98–106.

    Article  PubMed  CAS  Google Scholar 

  71. Dammai V, Subramani S. The Human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 2001; 105:187–196.

    Article  PubMed  CAS  Google Scholar 

  72. Legakis JE, Terlecky SR. PTS2 protein import into mammalian peroxisomes. Traffic 2001; 2:252–260.

    Article  PubMed  CAS  Google Scholar 

  73. Walton PA, Hill PE, Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell 1995; 6:675–683.

    PubMed  CAS  Google Scholar 

  74. Walton PA, Gould SJ, Feramisco JR et al. Transport of microinjected proteins into peroxisomes of mammalian cells: Inability of Zellweger cell lines to import proteins with the SKL tripeptide peroxisomal targeting signal. Mol Cell Biol 1992; 12:531–541.

    PubMed  CAS  Google Scholar 

  75. Lazarow P, Thieringer R, Cohen G et al. Small G. Protein import into peroxisomes in vitro. Meth Cell Biol 1991; 34:303–326.

    Article  CAS  Google Scholar 

  76. Wendland M, Subramani S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J Cell Biol 1993; 120:675–685.

    Article  PubMed  CAS  Google Scholar 

  77. Rapp S, Soto U, Just WW. Import of firefly luciferase into peroxisomes of permeabilized Chinese hamster ovary cells: A model system to study peroxisomal protein import in vitro. Exp Cell Res 1993; 205:59–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Terlecky, S.R., Walton, P.A. (2005). The Biogenesis and Cell Biology of Peroxisomes in Human Health and Disease. In: The Biogenesis of Cellular Organelles. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26867-7_9

Download citation

Publish with us

Policies and ethics