Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The vertebrate cell nucleus undergoes disassembly and reassembly at each cell division. Elaborate and well-regulated mechanisms ensure faithful and precise cellular duplication throughout this process. This chapter is intended to summarize our current understanding of nuclear biogenesis, or nucleogenesis, with a specific focus on nuclear envelope assembly and nucleolar reformation following mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spector DL. Nuclear domains. J Cell Sci 2001; 114(Pt 16):2891–3.

    PubMed  CAS  Google Scholar 

  2. Goldman RD, Gruenbaum Y, Moir RD et al. Nuclear lamins: Building blocks of nuclear architecture. Genes Dev 2002; 16(5):533–47.

    Article  PubMed  CAS  Google Scholar 

  3. Moir RD, Spann TP. The structure and function of nuclear lamins: Implications for disease. Cell Mol Life Sci 2001; 58(12–13):1748–57.

    Article  PubMed  CAS  Google Scholar 

  4. Gant TM, Wilson KL. Nuclear assembly. Annu Rev Cell Dev Biol 1997; 13:669–95.

    Article  PubMed  CAS  Google Scholar 

  5. Holaska JM, Wilson KL, Mansharamani M. The nuclear envelope, lamins and nuclear assembly. Curr Opin Cell Biol 2002; 14(3):357–64.

    Article  PubMed  CAS  Google Scholar 

  6. Collas I, Courvalin JC. Sorting nuclear membrane proteins at mitosis. Trends Cell Biol 2000; 10(1):5–8.

    Article  PubMed  CAS  Google Scholar 

  7. Ellenberg J, Siggia ED, Moreira JE et al. Nuclear membrane dynamics and reassembly in living cells: Targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 1997; 138(6):1193–206.

    Article  PubMed  CAS  Google Scholar 

  8. Yang L, Guan T, Gerace L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol 1997; 137(6):1199–210.

    Article  PubMed  CAS  Google Scholar 

  9. Salina D, Bodoor K, Eckley DM et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002; 108(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  10. Beaudouin J, Gerlich D, Daigje N et al. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108(1):83–96.

    Article  PubMed  CAS  Google Scholar 

  11. Vigers GP, Lohka MJ. A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs. J Cell Biol 1991; 112(4):545–56.

    Article  PubMed  CAS  Google Scholar 

  12. Lourim D, Krohne G. Membrane-associated lamins in Xenopus egg extracts: Identification of two vesicle populations. J Cell Biol 1993; 123(3):501–12.

    Article  PubMed  CAS  Google Scholar 

  13. Sullivan KM, Busa WB, Wilson KL. Calcium mobilization is required for nuclear vesicle fusion in vitro: Implications for membrane traffic and IP3 receptor function. Cell 1993; 73(7):1411–22.

    Article  PubMed  CAS  Google Scholar 

  14. Newport J, Dunphy W. Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components. J Cell Biol 1992; 116(2):295–306.

    Article  PubMed  CAS  Google Scholar 

  15. Boman AL, Delannoy MR, Wilson KL. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro. J Cell Biol 1992; 116(2):281–94.

    Article  PubMed  CAS  Google Scholar 

  16. Drummond S, Ferrigno P, Lyon C et al. Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J Cell Biol 1999; 144(2):225–40.

    Article  PubMed  CAS  Google Scholar 

  17. Macaulay C, Forbes DJ. Assembly of the nuclear pore: Biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J Cell Biol 1996; 132(1–2):5–20.

    Article  PubMed  CAS  Google Scholar 

  18. Buendia B, Courvalin JC, Collas P. Dynamics of the nuclear envelope at mitosis and during apoptosis. Cell Mol Life Sci 2001; 58(12–13):1781–9.

    Article  PubMed  CAS  Google Scholar 

  19. Vasu SK, Forbes DJ. Nuclear pores and nuclear assembly. Curr Opin Cell Biol 2001; 13(3):363–75.

    Article  PubMed  CAS  Google Scholar 

  20. Chaudhary N, Courvalin JC. Stepwise reassembly of the nuclear envelope at the end of mitosis. J Cell Biol 1993; 122(2):295–306.

    Article  PubMed  CAS  Google Scholar 

  21. Haraguchi T, Koujin T, Hayakawa T et al. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup 153 to reforming functional nuclear envelopes. J Cell Sci 2000; 113(Pt 5):779–94.

    PubMed  CAS  Google Scholar 

  22. Moir RD, Yoon M, Khuon S et al. Nuclear lamins A and B1: Different pathways ofassembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151(6):1155–68.

    Article  PubMed  CAS  Google Scholar 

  23. Bodoor K, Shaikh S, Salina D et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 1999; 112(Pt 13):2253–64.

    PubMed  CAS  Google Scholar 

  24. Goldberg MW, Wiese C, Allen TD et al. Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: Evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci 1997; 110(Pt 4):409–20.

    PubMed  CAS  Google Scholar 

  25. Kuersten S, Ohno M, Mattaj IW. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol 2001; 11(12):497–503.

    Article  PubMed  CAS  Google Scholar 

  26. Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev 2001; 65(4):570–94.

    Article  PubMed  CAS  Google Scholar 

  27. Macara IG. Why FRET about Ran? Dev Cell 2002; 2(4):379–80.

    Article  PubMed  CAS  Google Scholar 

  28. Dasso M. Running on Ran: Nuclear transport and the mitotic spindle. Cell 2001; 104(3):321–4.

    Article  PubMed  CAS  Google Scholar 

  29. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–60.

    Article  PubMed  CAS  Google Scholar 

  30. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: The soluble phase. Annu Rev Biochem 1998; 67:265–306.

    Article  PubMed  CAS  Google Scholar 

  31. Kalab P, Pu RT, Dasso M. The ran GTPase regulates mitotic spindle assembly. Curr Biol 1999; 9(9):481–4.

    Article  PubMed  CAS  Google Scholar 

  32. Ohba T, Nakamura M, Nishitani H et al. Self-organization of microtubule astersinduced in Xenopus egg extracts by GTP-bound Ran. Science 1999; 284(5418):1356–8.

    Article  PubMed  CAS  Google Scholar 

  33. Wilde A, Zheng Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 1999; 284(5418):1359–62.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang C, Hughes M, Clarke PR. Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 1999; 112(Pt 14):2453–61.

    PubMed  CAS  Google Scholar 

  35. Carazo-Salas RE, Guarguaglini G, Gruss OJ et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 1999; 400(6740):178–81.

    Article  PubMed  CAS  Google Scholar 

  36. Carazo-Salas RE, Gruss OJ, Mattaj IW et al. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 2001; 3(3):228–34.

    Article  PubMed  CAS  Google Scholar 

  37. Wilde A, Lizarraga SB, Zhang L et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 2001; 3(3):221–7.

    Article  PubMed  CAS  Google Scholar 

  38. Bamba C, Bobinnec Y, Fukuda M et al. The GTPase Ran Regulates Chromosome Positioning and Nuclear Envelope Assembly In Vivo. Curr Biol 2002; 12(6):503–7.

    Article  PubMed  CAS  Google Scholar 

  39. Hetzer M, Bilbao-Cortes D, Walther TC et al. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5(6):1013–24.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang C, Clarke PR. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288(5470):1429–32.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang C, Clarke PR. Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr Biol 2001; 11(3):208–12.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang C, Hutchins JR, Muhlhausser P et al. Role of Importin-beta in the Control of Nuclear Envelope Assembly by Ran. Curr Biol 2002; 12(6):498–502.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama N, Hayashi N, Seki T et al. A giant nucleopore protein that binds Ran/TC4. Nature 1995; 376(6536):184–8.

    Article  PubMed  CAS  Google Scholar 

  44. Aebi U, Cohn J, Buhle L et al. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 1986; 323(6088):560–4.

    Article  PubMed  CAS  Google Scholar 

  45. Spann TP, Moir RD, Goldman AE et al. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J Cell Biol 1997; 136(6):1201–12.

    Article  PubMed  CAS  Google Scholar 

  46. Moir RD, Spann TP, Herrmann H et al. Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 2000; 149(6):1179–92.

    Article  PubMed  CAS  Google Scholar 

  47. Spann TP, Goldman AE, Wang C et al. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol 2002; 156(4):603–8.

    Article  PubMed  CAS  Google Scholar 

  48. Dabauvalle MC, Loos K, Merkert H et al. Spontaneous assembly of pore complex-containing membranes (“annulate lamellae”) in Xenopus egg extract in the absence of chromatin. J Cell Biol 1991; 112(6):1073–82.

    Article  PubMed  CAS  Google Scholar 

  49. Burke B, Gerace L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell 1986; 44(4):639–52.

    Article  PubMed  CAS  Google Scholar 

  50. Ulitzur N, Gruenbaum Y. Nuclear envelope assembly around sperm chromatin in cell-free preparations from Drosophila embryos. FEBS Lett 1989; 259(1):113–6.

    Article  PubMed  CAS  Google Scholar 

  51. Ulitzur N, Harel A, Feinstein N et al. Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract. J Cell Biol 1992; 119(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  52. Ulitzur N, Harel A, Goldberg M et al. Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol Biol Cell 1997; 8(8):1439–48.

    PubMed  CAS  Google Scholar 

  53. Newport JW, Wilson KL, Dunphy WG. A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 1990; 111(6 Pt 1):2247–59.

    Article  PubMed  CAS  Google Scholar 

  54. Meier J, Campbell KH, Ford CC et al. The role of lamin LIII in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs. J Cell Sci 1991; 98 (Pt 3):271–9.

    PubMed  CAS  Google Scholar 

  55. Lopez-Soler RI, Moir RD, Spann TP et al. A role for nuclear lamins in nuclear envelope assembly. J Cell Biol 2001; 154(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  56. Lenz-Bohme B, Wismar J, Fuchs S et al. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Biol 1997; 137(5):1001–16.

    Article  PubMed  CAS  Google Scholar 

  57. Hetzer M, Meyer HH, Walther TC et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 2001; 3(12):1086–91.

    Article  PubMed  CAS  Google Scholar 

  58. Busch H, Smetana K. The nudeolus New York: Academic Press, 1970.

    Google Scholar 

  59. Hadjiolov AA. The nucleolus and ribosome biogenesis. Cell Biology Monographs New York: Springer-Verlag, 1985:1–263.

    Google Scholar 

  60. Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol 1999; 11(3):385–90.

    Article  PubMed  CAS  Google Scholar 

  61. Shaw PJ, Jordan EG. The nucleolus. Annu Rev Cell Dev Biol 1995; 11:93–121.

    Article  PubMed  CAS  Google Scholar 

  62. Carmo-Fonseca M, Mendes-Soares L, Campos I. To be or not to be in the nucleolus. Nat Cell Biol 2000; 2(6):E107–12.

    Article  PubMed  CAS  Google Scholar 

  63. Garcia SN, Pillus L. Net results of nucleolar dynamics. Cell 1999; 97(7):825–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pederson T. The plurifunctional nucleolus. Nucleic Acids Research 1998; 26(17):3871–6.

    Article  PubMed  CAS  Google Scholar 

  65. Johnson FB, Marciniak RA, Guarente L. Telomeres, the nucleolus and aging. Curr Opin Cell Biol 1998; 10(3):332–8.

    Article  PubMed  CAS  Google Scholar 

  66. Scheer U, Rose KM. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immuncytochemistry. Proc Natl Acad Sci USA 1984; 81:1431–35.

    Article  PubMed  CAS  Google Scholar 

  67. Roussel P, Andre C, Masson C et al. Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 1993; 104 (Pt 2):327–37.

    PubMed  CAS  Google Scholar 

  68. Gebrane-Younes J, Fomproix N, Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with noncondensed rDNA. Journal of Cell Science 1997; 110 (Pt 19):2429–40.

    PubMed  CAS  Google Scholar 

  69. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 1999; 62:109–54.

    Article  PubMed  CAS  Google Scholar 

  70. Locke M, Leung H. The pairing of nucleolar patterns in an epithelium as evidence for a conserved nuclear skeleton. Tissue & Cell 1985; 17:573–88.

    Article  CAS  Google Scholar 

  71. Hernandez-Verdun D, Roussel P, Gebrane-Younes J. Emerging concepts of nucleolar assembly. J Cell Sci 2002; 115 (Pt 11):2265–70.

    PubMed  CAS  Google Scholar 

  72. Jimenez-Garcia LF, Segura-Valdez ML, Ochs RL et al. Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active prerRNA transcription after mitosis. Mol Biol Cell 1994; 5(9):955–66.

    PubMed  CAS  Google Scholar 

  73. Ochs RL, Lischwe MA, Shen E et al. Nucleologenesis: Composition and fate of prenucleolar bodies. Chromosoma 1985; 92(5):330–6.

    Article  PubMed  CAS  Google Scholar 

  74. Benavente R. Postmitotic nuclear reorganization events analyzed in living cells. Chromosoma 1991; 100(4):215–20.

    Article  PubMed  CAS  Google Scholar 

  75. Bell P, Dabauvalle MC, Scheer U. In vitro assembly of prenucleolar bodies in Xenopus egg extract. J Cell Biol 1992; 118(6):1297–304.

    Article  PubMed  CAS  Google Scholar 

  76. Verheggen C, Almouzni G, Hernandez-Verdun D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J Cell Biol 2000; 149(2):293–306.

    Article  PubMed  CAS  Google Scholar 

  77. Fomproix N, Gebrane-Younes J, Hernandez-Verdun D. Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J Cell Sci 1998; 111 (Pt 3):359–72.

    PubMed  CAS  Google Scholar 

  78. Savino TM, Gebrane-Younes J, De Mey J et al. Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 2001; 153(5):1097–110.

    Article  PubMed  CAS  Google Scholar 

  79. Sirri V, Hernandez-Verdun D, Roussel P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 2002; 156(6):969–81.

    Article  PubMed  CAS  Google Scholar 

  80. Oakes M, Aris JP, Brockenbrough JS et al. Nomura M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 1998; 143(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  81. Karpen GH, Schaefer JE, Laird CD. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes & Dev 1988; 2(12B):1745–63.

    CAS  Google Scholar 

  82. Verheggen C, Le Panse S, Almouzni G et al. Presence of prerRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 1998; 142(5):1167–80.

    Article  PubMed  CAS  Google Scholar 

  83. Dousset T, Wang C, Verheggen C et al. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell 2000; 11(8):2705–17.

    PubMed  CAS  Google Scholar 

  84. Benavente R, Rose KM, Reimer G et al. Inhibition of nucleolar reformation after microinjection of antibodies to RNA polymerase I into mitotic cells. J Cell Biol 1987; 105(4):1483–91.

    Article  PubMed  CAS  Google Scholar 

  85. Weisenberger D, Scheer U, Benavente R. The DNA topoisomerase I inhibitor camptothecin blocks postmitotic reformation of nucleoli in mammalian cells. Euro J Cell Biol 1993; 61(1):189–92.

    CAS  Google Scholar 

  86. Wiese C, Goldberg MW, Allen TD et al. Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent ‘envelope smoothing’ event. J Cell Sci 1997; 110 (Pt 13):1489–502.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Huang, S. (2005). Nucleogenesis. In: The Biogenesis of Cellular Organelles. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26867-7_7

Download citation

Publish with us

Policies and ethics