Skip to main content

Theory of Organelle Biogenesis

A Historical Perspective

  • Chapter
The Biogenesis of Cellular Organelles

Abstract

Organelles, defined as intracellular membrane-bound structures in eukaryotic cells, were described from the early days of light microscopy and the development of cell theory in the 19th century. During the 20th century, electron microscopy and subcellular fractionation enabled the discovery of additional organelles and, together with radiolabel-ling, allowed the first modern experiments on their biogenesis. Over the past 30 years, the development of cell-free systems and the use of yeast genetics have together established the major pathways of delivery of newly synthesised proteins to organelles and the vesicular traffic system used to transfer cargo between organelles in the secretory and endocytic pathways. Mechanisms of protein sorting, retrieval and retention have been described and give each organelle its characteristic composition. Insights have been gained into the mechanisms by which complex organelle morphology can be established. Organelle biogenesis includes the process of organelle inheritance by which organelles are divided between daughter cells during mitosis. Two inheritance strategies have been described, stochastic and ordered, which are not mutually exclusive. Among the major challenges of the future are the need to understand the role of self-organization in ensuring structural stability and the mechanisms by which a cell senses the status of its organelles and regulates their biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mellman I, Warren G. The road taken: Past and future foundations of membrane traffic. Cell 2000; 100:99–112.

    Article  PubMed  CAS  Google Scholar 

  2. In: Kendrew J, ed. The Encyclopedia of Molecular Biology. Oxford: Blackwell Science, 1994.

    Google Scholar 

  3. Tooze SA. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys. Acta 1998; 1404:231–244.

    CAS  Google Scholar 

  4. Raposo G, Marks MS. The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis. Traffic 2002; 3:237–248.

    Article  PubMed  Google Scholar 

  5. Schatz G. What mitochondria have told me. Mol Biol Cell 2001; 12:777–778.

    PubMed  CAS  Google Scholar 

  6. Nunnari J, Walter P. Regulation of organelle biogenesis. Cell 1996; 84:389–394.

    Article  PubMed  CAS  Google Scholar 

  7. Check E. Will the real Golgi please stand up. Nature 2002; 416:780–781.

    Article  PubMed  CAS  Google Scholar 

  8. Brown R. Observations on the organs and mode of fecundation in Orchidae and Asclepiadeae. Trans Linn Soc (Lond) 1833; 16:685–743.

    Article  Google Scholar 

  9. Schleiden MJ. Beiträge zur Phylogenesis. Müller’s Arch Anat Physiol Wiss Med 1838; 136–176.

    Google Scholar 

  10. Schwann T. Mikroskopische untersuchungen über die uberstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Berlin: Verlag der Sander’ schen Buchhandlung, 1839.

    Google Scholar 

  11. Von Mohl H. Über die vermehrung der pflanzenzellen durch theilung (Inaugural dissertation, Tubingen). 1835.

    Google Scholar 

  12. Virchow R. Cellular-Pathologic. Arch für Path Anat 1855; VIII:3–39.

    Article  Google Scholar 

  13. Wilson EB. The cell in development and heredity. 3rd ed. NY: MacMillan Co., 1925.

    Google Scholar 

  14. Flemming W. Zellsubstanz, Kern und Zelltheilung. Leipzig: FCW Vogel, 1882.

    Google Scholar 

  15. Richmond M. Thomas Henry Huxley’s developmental view of the cell. Nature Rev Mol Cell Biol 2002; 3:61–65.

    Article  CAS  Google Scholar 

  16. Robertson JD. Membrane structure. J Cell Biol 1981; 91:189s–204s.

    Article  PubMed  CAS  Google Scholar 

  17. Gorter E, Grendel R. On biomolecular layers of lipids on the chromocytes of the blood. J Exp Med 1925; 41 439–443.

    Article  CAS  PubMed  Google Scholar 

  18. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  19. Feulgen RJ, Rossenbeck H. Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elective Färbung von Zellkernen in mikroscopischen Präparaten. Hoppe-Seyler’s Zeit physiol Chem 1924; 135:203–248.

    CAS  Google Scholar 

  20. Montgomery TH. Comparative cytological studies with especial reference to the morphology of the nucleolus. J Morphology 1898; XV:204–265.

    Google Scholar 

  21. Miller Jr OL. The nucleolus, chromosomes and visualization of genetic activity. J Cell Biol 1981; 91:15s–27s.

    Article  PubMed  Google Scholar 

  22. Ernster L, Schatz G. Mitochondria: A historical review. J Cell Biol 1981; 91:227s–255s.

    Article  PubMed  CAS  Google Scholar 

  23. Altmann R. Die Elementarorganismen und ihre Beziehungen zu den Zellen. Leipzig, Veit: 1890.

    Google Scholar 

  24. Golgi C. Sur la structure des cellules nerveuses. Arch Ital Biol 1898; 30:60–71.

    Google Scholar 

  25. Farquhar MG, Palade GE. Golgi apparatus (complex) — (1954–1981) — from artifact to center stage. J Cell Biol 1981; 91:77s–103s.

    Article  PubMed  CAS  Google Scholar 

  26. Bensley RR, Hoerr N. Studies on cell structure by freeze-drying method; preparation and properties of mitochondria. Anat Rec 1934; 60:449–455.

    Article  CAS  Google Scholar 

  27. Claude A. Fractionation of mammalian liver cells by differential centrifugation II. Experimental procedures and results. J Exp Med 1946; 84:61–89.

    Article  CAS  PubMed  Google Scholar 

  28. De Duve C, Beaufay H. A short history of tissue fractionation. J Cell Biol 1981; 91:293s–299s.

    Article  PubMed  Google Scholar 

  29. Hogeboom GH, Schneider WC, Palade GE. Cytochemical studies of mammalian tissues 1. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic paniculate material. J Biol Chem 1948; 172:619–635.

    CAS  PubMed  Google Scholar 

  30. De Duve C. Exploring cells with a centrifuge. Science 1975; 189:186–194.

    Article  PubMed  CAS  Google Scholar 

  31. Pease DC, Porter KR. Electron microscopy and ultramicrotomy. J Cell Biol 1981; 91:287s–292s.

    Article  PubMed  CAS  Google Scholar 

  32. Palade GE. Fine structure of mitochondria. Anat Rec 1952; 114:427–451.

    Article  PubMed  CAS  Google Scholar 

  33. Dalton AJ, Felix MD. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis — in situ, in homogenates and after homogenisation. Am J Anat 1954; 94:171–208.

    Article  PubMed  CAS  Google Scholar 

  34. Porter KR, Claude A, Fullam EF. A study of tissue culture cells by electron microscopy. J Exp Med 1945; 81:233–246.

    Article  PubMed  CAS  Google Scholar 

  35. Palade GE. The endoplasmic reticulum. J Biophys Biochem Cytol 1956; 2:85–97.

    PubMed  CAS  Google Scholar 

  36. Bainton DF. The discovery of lysosomes. J Cell Biol 1981; 91:66s–76s.

    Article  PubMed  CAS  Google Scholar 

  37. De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev 1966; 46:323–357.

    PubMed  Google Scholar 

  38. Jamieson JD, Palade GE. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol 1967; 34:577–596.

    Article  PubMed  CAS  Google Scholar 

  39. Palade G. Intracellular aspects of the process of protein synthesis. Science 1975; 189:347–358.

    Article  PubMed  CAS  Google Scholar 

  40. Roth TF, Porter KR. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J Cell Biol 1964; 20:313–332.

    Article  PubMed  CAS  Google Scholar 

  41. Anderson RGW, Goldstein JL, Brown MS. Localisation of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc Natl Acad Sci USA 1976; 73:2434–2438.

    Article  PubMed  CAS  Google Scholar 

  42. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during neurotransmitter release at the frog neuromuscular junction. J Cell Biol 1973; 57:315–344.

    Article  PubMed  CAS  Google Scholar 

  43. Steinman RM, Brodie SE, Cohn ZA. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol 1976; 68:665–687.

    Article  PubMed  CAS  Google Scholar 

  44. Hopkins CR. The importance of the endosome in intracellular traffic. Nature 1983; 304:684–685.

    Article  PubMed  CAS  Google Scholar 

  45. Blobel G. Protein targeting (Nobel lecture). Chembiochem 2000; 1:86–102.

    Article  PubMed  CAS  Google Scholar 

  46. Rassow J, Pfanner N. The protein import machinery of the mitochondrial membranes. Traffic 2000; 1:457–464.

    Article  PubMed  CAS  Google Scholar 

  47. Cline K, Henry R. Import and routing of nucleus-encoded chloroplast proteins. Ann Rev Cell Dev Biol 1996; 12:1–26.

    Article  CAS  Google Scholar 

  48. Subramani S, Protein import into peroxisomes and biogenesis of the organelle. Ann Rev Cell Devel Biol 1993; 9:445–478.

    Article  CAS  Google Scholar 

  49. Görlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Ann Rev Cell Dev. Biol 1999; 15:607–660.

    Article  Google Scholar 

  50. Tokatlidis K, Schatz G. Biogenesis of mitochondrial inner membrane proteins. J Biol Chem 1999; 274:35285–35288.

    Article  PubMed  CAS  Google Scholar 

  51. Mihara K. Targeting and insertion of nuclear-encoded preproteins into the mitochondrial outer membrane. Bio Essays 2000; 22:364–371.

    CAS  Google Scholar 

  52. Schleiff E, Soil J. Travelling of proteins through membranes: Translocation into chloroplasts. Planta 2000; 211:449–456.

    Article  PubMed  CAS  Google Scholar 

  53. Purdue PE, Lazarow PB. Peroxisome biogenesis. Ann Rev Cell Dev Biol 2001; 17:701–752.

    Article  CAS  Google Scholar 

  54. Bayliss R, Corbett AH, Stewart M. The molecular mechanism of transport of macromolecules through nuclear pore complexes. Traffic 2000; 1:448–456.

    Article  PubMed  CAS  Google Scholar 

  55. Kornfeld S, Mellman I. The biogenesis of lysosomes. Ann Rev Cell Dev Biol 1989; 5:483–525.

    Article  CAS  Google Scholar 

  56. Benting JH, Rietveld AG, Simons K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol 1999; 146:313–320.

    Article  PubMed  CAS  Google Scholar 

  57. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA 1980; 77:1496–1500.

    Article  PubMed  CAS  Google Scholar 

  58. Margulis L. Origin of eukaryotic cells. New Haven: Yale University Press, 1970.

    Google Scholar 

  59. Kurland CG, Andersson SGE. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 2000; 64:786–820.

    Article  PubMed  CAS  Google Scholar 

  60. Rothman J. Mechanisms of intracellular protein transport. Nature 1994; 372:55–63.

    Article  PubMed  CAS  Google Scholar 

  61. Pearse BM. Clathrin: A unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 1976; 73:1255–1259.

    Article  PubMed  CAS  Google Scholar 

  62. Fries E, Rothman JE. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc Natl Acad Sci USA 1980; 77:3870–3874.

    Article  PubMed  CAS  Google Scholar 

  63. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205–215.

    Article  PubMed  CAS  Google Scholar 

  64. Balch WE, Dunphy WG, Braell WA et al. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 1984; 39:405–416.

    Article  PubMed  CAS  Google Scholar 

  65. Balch W, Glick BS, Rothman JE. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell 1984; 39:525–536.

    Article  PubMed  CAS  Google Scholar 

  66. Block MR, Glick BS, Wilcox CA et al. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci USA 1988; 85:7852–7856.

    Article  PubMed  CAS  Google Scholar 

  67. Robinson JS, Klionsky DJ, Banta LM et al. Protein sorting in Saccharomyces cerevisiae: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 1988; 8:4936–4948.

    PubMed  CAS  Google Scholar 

  68. Raymond CK, Howald-Stevenson I, Vater CA et al. Morphological classification of the yeast vacuolar protein sorting mutants: Evidence for a prevacuolar compartment in Class E vps mutants. Mol Biol Cell 1992; 3:1389–1402.

    PubMed  CAS  Google Scholar 

  69. Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes: De novo formation of a membrane structure. Trends Cell Biol 2002; 12:231–235.

    Article  PubMed  CAS  Google Scholar 

  70. Seaman MNJ, Luzio JP. Lysosomes and other late compartments of the endocytic pathway. In: Endocytosis: Frontiers in Molecular Biology. Oxford: Oxford University Press, 2001:111–148.

    Google Scholar 

  71. Seeley ES, Kato M, Margolis N et al. Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 2002; 13:782–794.

    Article  PubMed  CAS  Google Scholar 

  72. Collins BM, McCoy AJ, Kent HM et al. Molecular architecture and factional model of endocytic AP-2 complex. Cell 2002; 109:523–535.

    Article  PubMed  CAS  Google Scholar 

  73. Pearse BM, Robinson MS. Clathrin, adaptors, and sorting. Ann Rev Cell Biol 1990; 6:151–171.

    Article  PubMed  CAS  Google Scholar 

  74. Robinson MS, Bonifacino JS. Adaptor-related proteins. Curr Opin Cell Biol 2001; 13:444–453.

    Article  PubMed  CAS  Google Scholar 

  75. Kelly RB. New twists for dynamin. Nature Cell Biol 1999; 1:E8–E9.

    Article  PubMed  CAS  Google Scholar 

  76. Eugster A, Frigerio G, Dale M et al. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 2000; 19:3905–3917.

    Article  PubMed  CAS  Google Scholar 

  77. Letourneur F, Gaynor EC, Hennecke S et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994; 79:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  78. Matsuoka K, Orci L, Amherdt M et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 1998; 93:263–275.

    Article  PubMed  CAS  Google Scholar 

  79. Sollner T, Whiteheart SW, Brunner M et al. Protein SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362:318–324.

    Article  PubMed  CAS  Google Scholar 

  80. McNew JA, Parlati F, Fukuda R et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000; 407:153–159.

    Article  PubMed  CAS  Google Scholar 

  81. Pelham HR. SNAREs and the secretory pathway-lessons from yeast. Exp Cell Res 1999; 247:1–8.

    Article  PubMed  CAS  Google Scholar 

  82. Sutton RB, Fasshauer D, Jahn R et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998; 395:347–353.

    Article  PubMed  CAS  Google Scholar 

  83. Fasshauer D, Sutton RB, Brunger AT et al. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc Natl Acad Sci USA 1998; 95:15781–15786.

    Article  PubMed  CAS  Google Scholar 

  84. Bock JB, Matern HT, Peden AA et al. A genomic perspective on membrane compartment organization. Nature 2001; 409:839–841.

    Article  PubMed  CAS  Google Scholar 

  85. Weber T, Zemelman BV, McNew JA et al. SNAREpins: Minimal machinery for membrane fusion. Cell 1998; 92:759–772.

    Article  PubMed  CAS  Google Scholar 

  86. Fukuda R, McNew JA, Weber T et al. Functional architecture of an intracellular membrane t-SNARE. Nature 2000; 407:198–202.

    Article  PubMed  CAS  Google Scholar 

  87. Chavrier P, Parton RG, Hauri HP. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990; 62:317–329.

    Article  PubMed  CAS  Google Scholar 

  88. Pfeffer SR. Transport-vesicle targeting: Tethers before SNAREs. Nature Cell Biol 1999 1: E17–E22.

    Article  PubMed  CAS  Google Scholar 

  89. Peters C, Mayer A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 1998; 396:575–580.

    Article  PubMed  CAS  Google Scholar 

  90. Pryor PR, Buss F, Luzio JP. (2000) Calcium, calmodulin and the endocytic pathway. ELSO Gaz. 2000; 2:(http://www.the-elso-gazette.org/magazines/issue2/reviews/reviewsl_pr.asp).

    Google Scholar 

  91. Goldstein J, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279:679–685.

    Article  PubMed  CAS  Google Scholar 

  92. Bretscher MS, Thomson JN, Pearse BM. Coated pits act as molecular filters. Proc Natl Acad Sci USA 1980; 77:4156–4159.

    Article  PubMed  CAS  Google Scholar 

  93. Davis CG, Lehrman MA, Russell DW et al. The J.D. mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 1986; 45:15–24.

    Article  PubMed  CAS  Google Scholar 

  94. Bonifacino JS, Dell’Angelica EC. Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 1999; 145:923–926.

    Article  PubMed  CAS  Google Scholar 

  95. Owen DJ, Evans PR. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 1998; 282:1327–1332.

    Article  PubMed  CAS  Google Scholar 

  96. Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48:899–907.

    Article  PubMed  CAS  Google Scholar 

  97. Semenza JC, Hardwick KG, Dean N et al. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 1990; 61:1349–1357.

    Article  PubMed  CAS  Google Scholar 

  98. Lewis MJ, Sweet DJ, Pelham HR. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 1990; 61:1359–1363.

    Article  PubMed  CAS  Google Scholar 

  99. Bretscher MS, Munro S. Cholesterol and the Golgi apparatus. Science 1993; 261:1280–1281.

    Article  PubMed  CAS  Google Scholar 

  100. Nilsson T, Rabouille C, Hui N et al. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 1996; 109:1975–1989.

    PubMed  CAS  Google Scholar 

  101. Nilsson T, Slusarewicz P, Hoe MH et al. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 1993; 330:1–4.

    Article  PubMed  CAS  Google Scholar 

  102. Reaves BJ, Banting G, Luzio JP. Lumenal and transmembrane domains play a role in sorting type I membrane proteins on endocytic pathways. Mol Biol Cell 1998; 9:1107–1122.

    PubMed  CAS  Google Scholar 

  103. Burkhardt JK. The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim Biophys Acta 1998; 1404:113–126.

    Article  PubMed  CAS  Google Scholar 

  104. Pfeffer SR. Constructing a Golgi complex. J Cell Biol 2001; 155:873–876.

    Article  PubMed  CAS  Google Scholar 

  105. Barr FA. The Golgi apparatus: Going round in circles? Trends Cell Biol 2002; 12:101–104.

    Article  PubMed  CAS  Google Scholar 

  106. Pelham HR, Rothman JE. The debate about transport in the Golgi—two sides of the same coin? Cell 2000; 102:713–719.

    Article  PubMed  CAS  Google Scholar 

  107. Pelham HR. Traffic through the Golgi apparatus. J Cell Biol 2001; 155:1099–1101.

    Article  PubMed  CAS  Google Scholar 

  108. Marsh BJ, Mastronarde DN, Buttle KF et al. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 2001; 98:2399–2406.

    Article  PubMed  CAS  Google Scholar 

  109. Griffiths G, Simons K. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 1986; 234:438–443.

    Article  PubMed  CAS  Google Scholar 

  110. Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Ann Rev Cell Dev Biol 2000; 16:557–589.

    Article  CAS  Google Scholar 

  111. Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: Protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 1998; 62:230–247.

    PubMed  CAS  Google Scholar 

  112. Luzio JP, Rous BA, Bright NA et al. Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 2000; 113:1515–1524.

    PubMed  CAS  Google Scholar 

  113. Mullins C, Bonifacino JS. The molecular machinery for lysosome biogenesis. Bioessays 2001; 23:333–343.

    Article  PubMed  CAS  Google Scholar 

  114. Gruenberg J, Maxfield FR. Membrane transport in the endocytic pathway. Curr Opin Cell Biol. 1995; 7:552–563.

    Article  PubMed  CAS  Google Scholar 

  115. Gu F, Gruenberg J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett 1999; 452:61–66.

    Article  PubMed  CAS  Google Scholar 

  116. Antonin W, Holroyd C, Fasshauer D et al. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J 2000; 19:6453–6464.

    Article  PubMed  CAS  Google Scholar 

  117. Antonin W, Fasshauer D, Becker S et al. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 2002; 9:107–111.

    Article  PubMed  CAS  Google Scholar 

  118. Piper RC, Luzio JP. Late endosomes: Sorting and partitioning in multivesicular bodies. Traffic 2001; 2:612–621.

    Article  PubMed  CAS  Google Scholar 

  119. Raiborg C, Bache KG, Gillooly DJ et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 2002; 4:394–398.

    Article  PubMed  CAS  Google Scholar 

  120. Warren G, Wickner W. Organelle inheritance. Cell 1996; 84:395–400.

    Article  PubMed  CAS  Google Scholar 

  121. Mitchison TJ, Salmon ED. Mitosis: A history of division. Nat Cell Biol 2001; 3:E17–21.

    Article  PubMed  CAS  Google Scholar 

  122. Paweletz N. Walther Flemming: Pioneer of mitosis research. Nature Reviews Molecular Cell Biology 2001; 2:72–75.

    Article  PubMed  CAS  Google Scholar 

  123. Shaw JM, Nunnari J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol 2002; 12:178–184.

    Article  PubMed  CAS  Google Scholar 

  124. Fehrenbacher KL, Davis D, Wu M et al. Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol Biol Cell 2002; 13:854–865.

    Article  PubMed  CAS  Google Scholar 

  125. Gerace L, Burke B. Functional organization of the nuclear envelope. Ann Rev Cell Biol 1988; 4:335–374.

    PubMed  CAS  Google Scholar 

  126. Newport J. Nuclear reconstitution in vitro: Stages of assembly around protein-free DNA. Cell 1987; 48:205–217.

    Article  PubMed  CAS  Google Scholar 

  127. Grant TM, Wilson KL. Nuclear Assembly. Ann Rev Cell Dev Biol 1997; 13:669–695.

    Article  Google Scholar 

  128. Aitchison JD, Rout MP. A tense time for the nuclear envelope. Cell 2002; 108:301–304.

    Article  PubMed  CAS  Google Scholar 

  129. Shima DT, Haldar K, Pepperkok R et al. Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J Cell Biol 1997; 137:1211–1228.

    Article  PubMed  CAS  Google Scholar 

  130. Rabouille C, Kondo H, Newman R et al. Syntaxin 5 is a common component of the NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 1998; 92:603–610.

    Article  PubMed  CAS  Google Scholar 

  131. Zaal KJ, Smith CL, Polishchuk RS et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999; 99:589–601.

    Article  PubMed  CAS  Google Scholar 

  132. Seemann J, Pypaert M, Taguchi T et al. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 2002; 295:848–851.

    Article  PubMed  CAS  Google Scholar 

  133. Horter J, Warren G. Golgi architecture and inheritance. Ann Rev Cell Dev Biol 2002; 18:379–420.

    Article  CAS  Google Scholar 

  134. Pelletier L, Stern CA, Pypaert M et al. Golgi biogenesis in Toxoplasma gondii. Nature 2002; 418:548–552.

    Article  PubMed  CAS  Google Scholar 

  135. Uchiyama K, Jokitalo E, Lindman M et al. The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle. J Cell Biol 2003; 161:1067–1079.

    Article  PubMed  CAS  Google Scholar 

  136. Misteli T. The concept of self-organization in cellular architecture. J Cell Biol 2001; 155:181–185.

    Article  PubMed  CAS  Google Scholar 

  137. Warren G. Membrane traffic and organelle division. Trends Biochem Sci 1985; 10:439–443.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Mullock, B.M., Luzio, J.P. (2005). Theory of Organelle Biogenesis. In: The Biogenesis of Cellular Organelles. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26867-7_1

Download citation

Publish with us

Policies and ethics