Skip to main content

Myocardial Infarction and Cardiac Fibrogenesis

  • Chapter
Fibrogenesis: Cellular and Molecular Basis

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Fibrogenesis is essential for infarct healing and affects ventricular remodeling, one of the most important prognostic factors after myocardial infarction. Fibrogenesis is initiated by a variety of cytokines and growth factors produced by activated macrophages and inflammatory cells during the initial inflammatory phase. Fibroblasts that proliferate and infiltrate into the infarct zone are transformed into myofibroblasts, which express a variety of extracellular matrix (ECM) components that reconstruct the ECM in the infarcted myocardium. Following the inflammatory phase, fibrogenesis occurs prominently in the granulation tissue around the necrotic myocardium. Fibrillar collagens play major structural roles in infarct fibrosis. In addition to fibrillar collagens, basement membrane components of the ECM, type IV collagen, perlecan proteoglycan and laminin, appear in the infarct zone and also contribute to infarct ECM reconstruction. Other glycoproteins and proteoglycans are also expressed in the infarct zone and function in ECM reconstruction through their biological activity. Matricellular proteins modulate ECM reconstruction through paracrine and autocrine processes. Among various mediators of ECM homeostasis, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and angiotensin II function importantly in promoting infarct fibrogenesis. Stretching of the myocardial wall and hypoxia are physiological factors that are specific to myocardial infarction and stimulate infarct fibrogenic processes through enhancing the levels of the fibrogenic mediators. Intercellular fibrosis also occurs in the noninfarct zone and TGF-β1 and angiotensin II promote this fibrosis. Reperfusion and pharmacological intervention may modulate infarct fibrogenic processes and limit ventricular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weisman HF, Healy B. Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic concepts. Prog Cardiovasc Dis 1987; 30:73–110.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81:1161–1172.

    PubMed  CAS  Google Scholar 

  3. Kostuk WJ, Kazamias TM, Gander MP et al. Left ventricular size after acute myocardial infarction: serial changes and their prognostic significance. Circulation 1973; 47:1174–1179.

    PubMed  CAS  Google Scholar 

  4. White HD, Norris RM, Brown MA et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76:44–51.

    PubMed  CAS  Google Scholar 

  5. Capasso JM, Li P, Zhang X et al. Heterogeneity of ventricular remodeling after acute myocardial infarction in rats. Am J Physiol 1992; 262(2 Pt 2):486–495.

    Google Scholar 

  6. Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. FASEB J 1994; 8:854–861.

    PubMed  CAS  Google Scholar 

  7. Moritani H, Kusachi S, Takeda K et al. Reperfusion accelerates the distribution of type I and III collagen messenger RNA expression after acute myocardial infarction: in situ hybridization in experimental infarction in rats. Coron Artery Dis 1999; 10:89–96.

    PubMed  CAS  Google Scholar 

  8. Howell JM. Current and future trends in wound healing. Emerg Med Clin North Am 1992; 10:655–663.

    PubMed  CAS  Google Scholar 

  9. Denhardt DT, Noda M, O’Regan AW et al. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107:1055–1061.

    PubMed  CAS  Google Scholar 

  10. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol 1978; 90:57–70.

    PubMed  CAS  Google Scholar 

  11. Doi M, Kusachi S, Murakami T et al. Time-dependent changes of decorin in the infarct zone after experimentally induced myocardial infarction in rats: Comparison with biglycan. Pathol Res Pract 2000; 196:23–33.

    PubMed  CAS  Google Scholar 

  12. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000; 46:250–256.

    Article  PubMed  CAS  Google Scholar 

  13. Suezawa C, Murakami T, Ayada Y et al. spatial changes of gelatinase activitys and membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA expression in myocardial infarction in rats. Jpn Circ J 2001; 65Supplement I-A:122.

    Google Scholar 

  14. Cleutjens JP, Kandala JC, Guarda E et al. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 1995; 27:1281–1292.

    Article  PubMed  CAS  Google Scholar 

  15. Romanic AM, Burns-Kurtis CL, Gout B et al. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 2001; 68:799–814.

    Article  PubMed  CAS  Google Scholar 

  16. Strnlicht MD, Werb Z. Membrane-type MMPs (MMPs 14, 15, 16 and 17). New York: Oxford University Press, 1999.

    Google Scholar 

  17. Hirohata S, Kusachi S, Murakami M et al. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 1997; 78:278–284.

    PubMed  CAS  Google Scholar 

  18. Rohde LE, Ducharme A, Arroyo LH et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 1999; 99:3063–3070.

    PubMed  CAS  Google Scholar 

  19. Creemers EE, Cleutjens JP, Smits JF et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure. Circ Res 2001; 89:201–210.

    PubMed  CAS  Google Scholar 

  20. Ducharme A, Frantz S, Aikawa M et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106:55–62.

    PubMed  CAS  Google Scholar 

  21. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6:597–641.

    Article  PubMed  CAS  Google Scholar 

  22. Slack JL, Liska DJ, Bornstein P. Regulation of expression of the type I collagen genes. Am J Med Genet 1993; 45:140–151.

    Article  PubMed  CAS  Google Scholar 

  23. Brilla CG, Zhou G, Matsubara L et al. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994; 26:809–820.

    Article  PubMed  CAS  Google Scholar 

  24. Funck RC, Wilke A, Rupp H et al. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Med Biol 1997; 432:35–44.

    PubMed  CAS  Google Scholar 

  25. Chua CC, Hamdy RC, Chua BH. Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim Biophys Acta 1996; 28:175–180.

    Google Scholar 

  26. Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001; 33:7–21.

    PubMed  CAS  Google Scholar 

  27. Trojanowska M, LeRoy EC, Eckes B et al. Pathogenesis of fibrosis: type 1 collagen and the skin. J Mol Med 1998; 76:266–274.

    Article  PubMed  CAS  Google Scholar 

  28. Casscells W, Kimura H, Sanchez JA et al. Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 1990; 137:801–810.

    PubMed  CAS  Google Scholar 

  29. Yamasaki S, Kusachi S, Moritani H et al. Reperfusion hastens appearance and extent of distribution of type I collagen in infarct zone: immunohistochemical study in rat experimental infarction. Cardiovasc Res 1995; 30:763–768.

    Article  PubMed  CAS  Google Scholar 

  30. Nakahama M, Murakami T, Kusachi S et al. Expression of perlecan proteoglycan in the infarct zone of mouse myocardial infarction. J Mol Cell Cardiol 2000; 32:1087–1100.

    Article  PubMed  CAS  Google Scholar 

  31. Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 1996; 28:851–858.

    Article  PubMed  CAS  Google Scholar 

  32. Sappino A, Schurch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 1990; 63:144–161.

    PubMed  CAS  Google Scholar 

  33. Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor beta 1, thyroid hormone, angiotensin II and basic fibroblasts growth factor. J Mol Cell Cardiol 1997;:2233–2244.

    Google Scholar 

  34. Falanga V, Zhou L, Yufit T. Low oxygen tension stimulates collagen synthesis and COL1A1 transcription through the action of TGF-beta1. J Cell Physiol 2002; 191:42–50.

    Article  PubMed  CAS  Google Scholar 

  35. Falanga V, Martin TA, Takagi H et al. Low oxygen tension increases mRNA levels of alpha 1 (I) procollagen in human dermal fibroblasts. J Cell Physiol 1993; 157:408–412.

    Article  PubMed  CAS  Google Scholar 

  36. Kondo S, Kubota S, Shimo T et al. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 2002; 23:769–776.

    Article  PubMed  CAS  Google Scholar 

  37. Carver W, Nagpal ML, Nachtigal M et al. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 1991; 69:116–122.

    PubMed  CAS  Google Scholar 

  38. Gutierrez JA, Perr HA. Mechanical stretch modulates TGF-beta1 and alpha1(I) collagen expression in fetal human intestinal smooth muscle cells. Am J Physiol 1999; 277:1074–1080.

    Google Scholar 

  39. Joki N, Kaname S, Hirakata M et al. Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertens Res 2000; 23:92–99.

    Google Scholar 

  40. Furthmayr H. Basement membrane collagen: Structure, assembly, and biosynthesis. In: Reid LM, ed. Extracellular matrix. New York: Marcel Dekker, 1993:149–183.

    Google Scholar 

  41. Razzaque MS, Koji T, Taguchi T et al. In situ localization of type III and type IV collagen-expressing cells in human diabetic nephropathy. J Pathol 1994; 174:131–138.

    Article  PubMed  CAS  Google Scholar 

  42. Olsen BR, Ninomiya Y. Basement membrane collagen. In: Vale R, ed. Extracellular matrix, anchor and adhesion proteins. 2 ed. New York: Oxford University Press, 1999:395–399.

    Google Scholar 

  43. Kuhn K, Wiedemann H, Timpl R et al. Macromolecular structure of basement membrane collagens. Identification of 7s collagen as a cross-linking domain of type IV collagen. FEBS Lett 1981; 125:123–128.

    Article  PubMed  CAS  Google Scholar 

  44. Bachinger HP, Fessler LI, Fessler LH. Mouse procollagen IV. Characterization and supramolecular association. J Biol Chem 1982; 257:9796–9803.

    PubMed  CAS  Google Scholar 

  45. Butkowski RJ, Wieslander J, Wilson B et al. Properties of the globular doamin of type IV collagen and its relationship to the Goodpasture antigen. J Biol Chem 1985; 260:3739–3745.

    PubMed  CAS  Google Scholar 

  46. Butkowski R, J., Langeveld JPM et al. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J Biol Chem 1987; 262:7874–7877.

    PubMed  CAS  Google Scholar 

  47. Hostikka SL, Eddy RL, Byers MG et al. Identification of a distinct type IV collagen chain with restricted kidney distrubution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc Natl Acad Sci USA 1990; 87:1606–1610.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou J, Mochizuki T, Smeets H et al. Deletion of the paired 5(IV) and 3(IV) collagen genes in inherited smooth muscle tumors. Science 1993; 261:1167–1169.

    Article  PubMed  CAS  Google Scholar 

  49. Ninomiya Y, Kagawa M, Iyama K et al. Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J Cell Biol 1995; 130:1219–1229.

    Article  PubMed  CAS  Google Scholar 

  50. Sado Y, Kagawa M, Kishiro Y et al. Establishment by the rat lymph node method of epitope-defined monoclonal antibodies recognizing the six different alpha chains of human type IV collagen. Histochem Cell Biol 1995; 104:267–275.

    Article  PubMed  CAS  Google Scholar 

  51. Murakami M, Kusachi S, Nakahama M et al. Expression of the alpha 1 and alpha 2 chains of type IV collagen in the infarct zone of rat myocardial infarction. J Mol Cell Cardiol 1998; 30:1191–1202.

    Article  PubMed  CAS  Google Scholar 

  52. Yamanish A, Kusachi S, Nakahama M et al. Sequential changes in the localization of the type IV collagen alpha chain in the infarct zone: immunohistochemical study of experimental myocardial infarction in the rat. Pathol Res Pract 1998; 194:413–422.

    Google Scholar 

  53. Iozzo RV, Cohen IR, Grassel S et al. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes membranes and pericellular matrices. Biochem J 1994; 302:625–639.

    PubMed  CAS  Google Scholar 

  54. Morishita N, Kusachi S, Yamasaki S et al. Sequential changes in laminin and type IV collagen in the infarct zone—Immunohistochemical study in rat myocardial infarction. Jpn Circ J 1996; 60:108–114.

    Article  PubMed  CAS  Google Scholar 

  55. Timpl R, Dziadek M, Fujiwara S et al. Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem 1983; 137:455–465.

    Article  PubMed  CAS  Google Scholar 

  56. Carlin B, Jaffe R, Bender B et al. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem 1981; 256:5209–5214.

    PubMed  CAS  Google Scholar 

  57. Fujiwara S, Wiedemann H, Timpl R et al. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur J Biochem 1984; 143:143–157.

    Article  Google Scholar 

  58. Battaglia C, Mayer U, Aumailley M et al. Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur J Biochem 1992; 208:359–366.

    Article  PubMed  CAS  Google Scholar 

  59. Beck K, Hunter I, Engel J. Structure and function of Laminin: anatomy of multidomain glycoprotein. FASEB J 1990; 4:148–160.

    PubMed  CAS  Google Scholar 

  60. Martin GR. Laminin and other basement membrane components. Ann Rev Cell Biol 1987; 3:87–85.

    Google Scholar 

  61. Aviezer D, Hecht D, Safran M et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 1994; 79:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  62. Whitelock JM, Murdoch AD, Iozzo RV et al. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996; 271:10079–10086.

    Article  PubMed  CAS  Google Scholar 

  63. Groffen AJ, Bukens CAF, Tryggvason K et al. Expression and characterization of human perlecan domains I and II synthesized by baculovirus-infected insect cells. Eur J Biochem 1996; 241:827–834.

    Article  PubMed  CAS  Google Scholar 

  64. Sellke FW, Laham RJ, Edelman ER et al. Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998; 65:1540–1544.

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe E, Smith DM, Sun JS et al. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 1998; 93:30–37.

    Article  PubMed  CAS  Google Scholar 

  66. Obama H, Biro S, Tashiro T et al. Myocardial infarction induces expression of midkine, a heparin-binding growth factor with reparative activity. Anticancer Res 1998; 18:145–152.

    PubMed  CAS  Google Scholar 

  67. Iozzo RV. Proteoglycans: Structure, biology, and molecular interactions. New York: Marcel Dekker, 2000.

    Google Scholar 

  68. Krusius T, Ruoslahti E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci USA 1986; 86:7683–7687.

    Article  Google Scholar 

  69. Scott JE. Proteoglycan-fibrillar collagen interactions. Biochem J 1988; 252:313–323.

    PubMed  CAS  Google Scholar 

  70. Fisher LW, Termine JD, Young MF. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J Biol Chem 1989; 264:4571–4576.

    PubMed  CAS  Google Scholar 

  71. Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. J Biol Chem 1988; 25:19430–19432.

    Google Scholar 

  72. Pogany G, Hernandez DJ, Vogel KG. The in vitro interaction of proteoglycans with type I collagen is modulated by phosphate. Arch Biochem Biophys 1994; 313:102–111.

    Article  PubMed  CAS  Google Scholar 

  73. Kresse H, Hausser H, Schonherr E et al. Biosynthesis and interactions of small chondroitin/dermatan sulphate proteoglycans. Eur J Clin Chem Clin Biochem 1994; 32:259–264.

    PubMed  CAS  Google Scholar 

  74. Schonherr E, Witsch-Prehm P, Harrach B et al. Interaction of biglycan with type I collagen. J Biol Chem 1995; 270:2776–2783.

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto K, Kusachi S, Ninomiya Y et al. Increase in the expression of biglycan mRNA expression Colocalized closely with that of type I collagen mRNA in the infarct zone after experimentally-induced myocardial infarction in rats. J Mol Cell Cardiol 1998; 30:1749–1756.

    Article  PubMed  CAS  Google Scholar 

  76. Riessen R, Isner JM, Blessing E et al. Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 1994; 144:962–974.

    PubMed  CAS  Google Scholar 

  77. Breuer B, Schmidt G, Kresse H. Nonuniform influence of transforming growth factor-beta on the biosynthesis of different forms of small chondroitin sulphate/dermatan sulphate proteoglycan. Biochem J 1990; 269:551–554.

    PubMed  CAS  Google Scholar 

  78. Kinsella MG, Tsoi CK, Jarvelainen HT et al. Selective expression and processing of biglycan during migration of bovine aortic endothelial cells. The role of endogenous basic fibroblast growth factor. J Biol Chem 1997; 272:318–325.

    Article  PubMed  CAS  Google Scholar 

  79. Casscells W, Bazoberry F, Speir E et al. Transforming growth factor-beta 1 in normal heart and in myocardial infarction. Ann NY Acad Sci 1990; 593:148–160.

    Article  PubMed  CAS  Google Scholar 

  80. Westergren-Thorsson G, Hernnas J, Sarnstrand B et al. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J Clin Invest 1993; 92:632–637.

    PubMed  CAS  Google Scholar 

  81. Evanko SP, Vogel KG. Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 1993; 307:153–164.

    Article  PubMed  CAS  Google Scholar 

  82. Vogel KG, Hernandez DJ. The effects of transforming growth factor-beta and serum on proteoglycan synthesis by tendon fibrocartilage. Eur J Cell Biol 1992; 59:304–313.

    PubMed  CAS  Google Scholar 

  83. Robbins JR, Evanko SP, Vogel KG. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 1997; 342:203–211.

    Article  PubMed  CAS  Google Scholar 

  84. Iwabu A, Murakami T, Kusachi S et al. Concomitant expression of heparin-binding epidermal growth factor-like growth factor mRNA and basic fibroblast growth factor mRNA in myocardial infarction in rats. Basic Res Cardiol 2002; 97:217–222.

    Article  Google Scholar 

  85. Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60:443–475.

    Article  PubMed  CAS  Google Scholar 

  86. Oldberg A, Antonsson P, Lindblom K et al. A collagen-binding 59-kd protein(fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2(decorin). EMBO J 1989; 8:2601–2604.

    PubMed  CAS  Google Scholar 

  87. Krull NB, Zimmermann T, Gressner AM. Spatial and temporal patterns of gene expression for the proteoglycans biglycan and decorin and for transforming growth factor-beta1 revealed by in situ hybridization during experimentally induced liver fibrosis in the rat. Hepatology 1993; 18:581–589.

    PubMed  CAS  Google Scholar 

  88. Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry 1996; 35:8795–8799.

    Article  PubMed  CAS  Google Scholar 

  89. Pins GD, Christiansen DL, Patel R et al. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J 1997; 73:2164–2172.

    Article  PubMed  CAS  Google Scholar 

  90. Kuc IM, Scott PG. Increased diameters of collagen fibrils precipitated in vitro in the presence of decorin from various connective tissues. Connect Tissue Res 1997; 36:287–296.

    Article  PubMed  CAS  Google Scholar 

  91. Svensson L, Heinegard D, Oldberg A. Decorin-binding sites for collagen type I are mainly located in leucine-rich repeats 4–5. J Biol Chem 1995; 270:20712–20716.

    Article  PubMed  CAS  Google Scholar 

  92. Isaka Y, Brees DK, Ikegaya K et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 1996; 2:418–423.

    Article  PubMed  CAS  Google Scholar 

  93. Border WA, Noble NA, Yamamoto T et al. Natural inhibitor of transforming growth factor-protects against scarring in experimental kidney disease. Nature 1992; 360:361–364.

    Article  PubMed  CAS  Google Scholar 

  94. Kojima T, Shworak NW, Rosenberg RD. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line. J Biol Chem 1992; 267:4870–4877.

    PubMed  CAS  Google Scholar 

  95. Kojima T, Leone CW, Marchildon GA et al. Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells. J Biol Chem 1992; 267:4859–4869.

    PubMed  CAS  Google Scholar 

  96. Saunders S, Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol 1988; 106:423–430.

    Article  PubMed  CAS  Google Scholar 

  97. Koda JE, Rapraeger A, Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem 1985; 260:8157–8162.

    PubMed  CAS  Google Scholar 

  98. Kiefer MC, Stephans JC, Crawford K et al. Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc Natl Acad Sci USA 1990; 87:6985–6989.

    Article  PubMed  CAS  Google Scholar 

  99. Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 and-4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 1997; 272:14713–14720.

    Article  PubMed  CAS  Google Scholar 

  100. Elenius K, Maatta A, Salmivirta M et al. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J Biol Chem 1992; 267:6435–6441.

    PubMed  CAS  Google Scholar 

  101. Hynes RO. Fibronectins. New York: Springer, 1990.

    Google Scholar 

  102. Mosher DF. Fibronectin. New York: Academic Press, 1989.

    Google Scholar 

  103. Ulrichm MM, Janssen AM, Daemen MJ et al. Increased expression of fibronectin isoforms after myocardial infarction in rats. J Mol Cell Cardiol 1997; 29:2533–2543.

    Article  Google Scholar 

  104. Knowlton AA, Connelly CM, Romo GM et al. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 1992; 89:1060–1068.

    PubMed  CAS  Google Scholar 

  105. Termine JD, Kleinman HK, Whitson SW et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981; 26:99–105.

    Article  PubMed  CAS  Google Scholar 

  106. Sezaki S, Komatsubara I, Ayada Y et al. Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of myocardial infarction in rats. Jpn Circ J 2001; 65Supplement I-A:278.

    Google Scholar 

  107. Sage EH, Vernon RB, Decker J et al. Distribution of the calcium-binding protein SPARC in tissues of embryonic and adult mice. J Histochem Cytochem 1989; 37:819–829.

    PubMed  CAS  Google Scholar 

  108. Vuorio T, Kahari VM, Black C et al. Expression of osteonectin, decorin, and transforming growth factor-beta 1 genes in fibroblasts cultured from patients with systemic sclerosis and morphea. J Rheumatol 1991; 18:247–251.

    PubMed  CAS  Google Scholar 

  109. Salonen J, Uitto VJ, Pan YM et al. Proliferating oral epithelial cells in culture are capable of both extracellular and intracellular degradation of interstitial collagen. Matrix 1991; 11:43–55.

    PubMed  CAS  Google Scholar 

  110. Reed MJ, Poulakkainen P, Lane TF et al. Differential expression of SPARC and thrombospondin 1 in wound repair: Immunolocalization and in situ hybridization. J Histochem Cytochem 1993; 41:1467–1477.

    PubMed  CAS  Google Scholar 

  111. Wrana JL, Overall CM, Sodek J. Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor-beta. Eur J Biochem 1991; 197:519–528.

    Article  PubMed  CAS  Google Scholar 

  112. Reed MJ, Vernon RB, Abrass IB et al. TGF-beta 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 1994; 158:169–179.

    Article  PubMed  CAS  Google Scholar 

  113. Pytela R, Pierschbacher MD, Ginsberg MH et al. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp—Specific adhesion receptors. Science 1986; 231:1559–1562.

    Article  PubMed  CAS  Google Scholar 

  114. Miyauchi A, Alvarez J, Greenfield EM et al. Recognition of osteopontin and related peptides by an αvβ3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem 1991; 260:20369–20374.

    Google Scholar 

  115. Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J 1993; 7:1475–1482.

    PubMed  CAS  Google Scholar 

  116. Ashkar S, Weber GF, Panoutsakopoulou V et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 2000; 287:860–864.

    Article  PubMed  CAS  Google Scholar 

  117. Yamamoto S, Nasu K, Ishida T et al. Effect of recombinant osteopontin on adhesion and migration of P388D1 cells. Ann N Y Acad Sci 1995; 760:378–380.

    Article  PubMed  CAS  Google Scholar 

  118. Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000; 105:21–34.

    PubMed  CAS  Google Scholar 

  119. Nemir M, Bhattacharyya D, Li X et al. Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J Biol Chem 2000; 275:969–976.

    Article  PubMed  CAS  Google Scholar 

  120. Liaw L, Birk DE, Ballas CB et al. Altered wound healing in mice lacking a functional osteopontin gene (supp1). J Clin Invest 1998; 101:1468–1478.

    PubMed  CAS  Google Scholar 

  121. Cronshow AD, MacBeath JR, Shackleton DR et al. TRAMP (tyrosine rich acidic matrix protein), a protein that copurifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein. Matrix 1993; 13:255–266.

    Google Scholar 

  122. MacBeath JR, Shackleton DR, Hulmes DJ. Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. J Biol Chem 1993; 268:19826–19832.

    PubMed  CAS  Google Scholar 

  123. Neame PJ, Choi HU, Rosenberg LC. The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin. J Biol Chem 1989; 264:5474–5479.

    PubMed  CAS  Google Scholar 

  124. Okamoto O, Suzuki Y, Kimura S et al. Extracellular matrix 22-kDa protein interacts with decorin core protein and is expressed in cutaneous fibrosis. J Biochem 1996; 132:106–114.

    Google Scholar 

  125. Supeeti-Fuga A, Rocchi M, Schafer BW et al. Complementary DNA sequence and chromosomal mapping of a human proteoglycan-binding cell-adhesion protein (dermatopontin). Genomics 1993; 17:463–467.

    Article  Google Scholar 

  126. Takemoto S, Murakami T, Kusachi S et al. Increased expression of dermatopontin mRNA in the infarct zone of experimentally induced myocardial infarction in rats: Comparison with decorin and type I collagen mRNAs. Basic Res Cardiol 2002; 97:461–468.

    Article  PubMed  CAS  Google Scholar 

  127. MacBeath JR, Shackleton DR, Hulmes DJ et al. Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. J Biol Chem 1993; 268:19826–19832.

    PubMed  CAS  Google Scholar 

  128. Takeuchi Y, Kodama Y, Matsumoto T. Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 1994; 269:32634–32638.

    PubMed  CAS  Google Scholar 

  129. Okamoto O, Fujiwara S, Abe M et al. Dermatopontin interacts with transforming growth factor beta and enhances its biological activity. Biochem J 1999; 337:537–541.

    Article  PubMed  CAS  Google Scholar 

  130. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990; 346:281–284.

    Article  PubMed  CAS  Google Scholar 

  131. Markmann AHH, Schonherr E, Kresse H. Influence of decorin expression on transforming growth factor-beta-mediated collagen gel retraction and biglycan induction. Matrix Biol 2000; 19:631–636.

    Article  PubMed  CAS  Google Scholar 

  132. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995; 30:537–543.

    Article  PubMed  CAS  Google Scholar 

  133. Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 1994; 8:823–831.

    PubMed  CAS  Google Scholar 

  134. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-betal in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 1997; 29:1947–1958.

    Article  PubMed  CAS  Google Scholar 

  135. Lindpaintner K, Lu W, Neidermajer N et al. Selective activation of cardiac angiotensinogen gen expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 1993; 25:133–143.

    Article  PubMed  CAS  Google Scholar 

  136. Yamagishi H, Kim S, Nishikimi T et al. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 1998; 25:1369–1380.

    Article  Google Scholar 

  137. Sun Y, Cleutjens JP, Diaz-Arias AA et al. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 1995; 28:1423–1432.

    Google Scholar 

  138. Passier RC, Smits JF, Verluyten MJ et al. Activation of angiotensin-converting enzyme expression in infarct zone following myocardial infarction. Am J Physiol 1995; 269:H1268–1276.

    PubMed  CAS  Google Scholar 

  139. Sun Y, Weber KT. Cells expression angiotensin II receptors in fibrous tissue of rat heart. Cardiovasc Res 1996; 31:518–525.

    Article  PubMed  CAS  Google Scholar 

  140. Lee AA, Dillmann WH, McCulloch AD et al. Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 1995; 27:2347–2357.

    Article  PubMed  CAS  Google Scholar 

  141. Sun Y, Zhang JQ, Zhang J et al. Angiotensin II, transforming growth factor-betal and repair in the infarcted heart. J Mol Cell Cardiol 1998; 30:1559–1569.

    Article  PubMed  CAS  Google Scholar 

  142. Raghow R, Postlethwaite AE, Keski-Oja J et al. Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest 1987; 79:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  143. Rossi P, Karsenty G, Roberts AB et al. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell 1988; 52:405–414.

    Article  PubMed  CAS  Google Scholar 

  144. Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 1987; 247:597–604.

    PubMed  CAS  Google Scholar 

  145. Thompson NL, Bazoberry F, Speir EH et al. Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors 1988; 1:91–99.

    PubMed  CAS  Google Scholar 

  146. Ohnishi H, Oka T, Kusachi S et al. Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 1998; 30:2411–2422.

    Article  PubMed  CAS  Google Scholar 

  147. Frazier K, Williams S, Kothapalli D et al. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996; 107:404–411.

    Article  PubMed  CAS  Google Scholar 

  148. Nishida T, Nakanishi T, Shimo T et al. Demonstration of receptors specific for connectve tissue growth factor on a human chondrocyte cell line (HCS-2/8). Biochem Biophys Res Commun 1998; 247:905–909.

    Article  PubMed  CAS  Google Scholar 

  149. Igarashi A, Okochi H, Bradham DM et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993; 4:637–645.

    PubMed  CAS  Google Scholar 

  150. Jacobs M, Staufenberger S, Gergs U et al. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol 1999; 31:1949–1959.

    Article  PubMed  CAS  Google Scholar 

  151. Yu CM, Tipoe GL, Wing-Hon Lai K et al. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 2001; 38:1207–1215.

    Article  PubMed  CAS  Google Scholar 

  152. Sun Y, Zhang JQ, Zhang J et al. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med 2000; 135:316–323.

    Article  PubMed  CAS  Google Scholar 

  153. De Carvalho Frimm C, Sun Y, Weber KT. Angiotensin II receptor blockade and myocardial fibrosis of the infarcted rat heart. J Lab Clin Med 1997; 129:439–446.

    Article  PubMed  Google Scholar 

  154. Youn TJ, Kim HS, Oh BH. Ventricular remodeling and transforming growth factor-beta 1 mRNA expression after nontransmural myocardial infarction in rats: effects of angiotensin converting enzyme inhibition and angiotensin II type 1 receptor blockade. Basic Res Cardiol 1999; 94:246–253.

    Article  PubMed  CAS  Google Scholar 

  155. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002; 105:1503–1508.

    Article  PubMed  Google Scholar 

  156. Hochman JS, Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 1987; 75:299–306.

    PubMed  CAS  Google Scholar 

  157. Jugdutt BI, Menon V. Beneficial effects of therapy on the progression of structural remodeling during healing after reperfused and nonreperfused myocardial infarction: different effects on different parameters. J Cardiovasc Pharmacol Ther 2002; 7:95.

    PubMed  CAS  Google Scholar 

  158. Ali SM, Brown Jr EJ, Nallapati SR et al. Early angiotensin converting enzyme inhibitor therapy after experimental myocardial infarction prevents left ventricular dilation by reducing infarct expansion: a possible mechanism of clinical benefits. Coron Artery Dis 1998; 9:815–821.

    Article  PubMed  CAS  Google Scholar 

  159. Litwin SE, Raya TE, Warner A et al. Effects of captopril on contractility after myocardial infarction: experimental observations. Am J Cardiol 1991; 68:26D–34D.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Kusachi, S., Ninomiya, Y. (2005). Myocardial Infarction and Cardiac Fibrogenesis. In: Fibrogenesis: Cellular and Molecular Basis. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26476-0_7

Download citation

Publish with us

Policies and ethics