Advertisement

Idiotypic Networks as a Metaphor for Data Analysis Algorithms

  • Sławomir T. Wierzchoń

Abstract

This paper was intended as a tutorial presentation of different models used to reproduce and analyze main immune functions. An express tour over vast literature devoted to the subject is offered. The choice of corresponding bibliographic positions was motivated by their relevance in current researches, computational simplicity, and richness of behavior of the model suggested by given source of information. Particularly, some remarks on discrete models are given, and general hints concerning designing of artificial immune systems are given.

Keywords

Immune System Artificial Immune Systems Exploratory Data Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. [1]
    Bagley, R.J., et al. Modeling adaptive biological systems. BioSystems 23: 113–138, 1989.CrossRefGoogle Scholar
  2. [2]
    Bersini, H. Self-assertion vs. self-recognition: A tribute to Francisco Varela. Proc. of the 1st International Conference on Artificial Immune Systems, ICARIS'2002, University of Kent at Canterbury, 2002, pp. 107–112Google Scholar
  3. [3]
    Bersini, H., Calenbuhr, V. Frustrated chaos in biological networks. J. theor. Biol., 188: 187–200, 1997CrossRefGoogle Scholar
  4. [4]
    Bonabeau, E. A simple model for the statistics of events in idiotypic networks. BioSystems, 39: 25–34, 1996CrossRefGoogle Scholar
  5. [5]
    Burgos, J.D. Fractal representation of the immune B cell repertoire. BioSystems, 39: 19–24, 1996CrossRefGoogle Scholar
  6. [6]
    Calenbuhr, V., Bersini, H., Stewart, J., Varela, F.J. Natural tolerance in a simple immune network. J. theor. Biol., 177: 199–213, 1995CrossRefGoogle Scholar
  7. [7]
    Carter, J.H. The immune system as a model for pattern recognition and classification. J. of the American Medical Informatics Assoc. 7: 28–41, 2000Google Scholar
  8. [8]
    Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw-Hill 1999Google Scholar
  9. [9]
    De Boer, R., Kevrekidis, I.G., Perelson, A.S. Immune network behavior I: from stationary states to limit cycle oscillations. Bull. Math. Biol. 55: 745–780, 1993CrossRefGoogle Scholar
  10. [10]
    De Boer, R., Kevrekidis, I.G., Perelson, A.S. Immune network behavior I: from oscillations to chaos and stationary states. Bull. Math. Biol. 55: 745–780, 1993CrossRefGoogle Scholar
  11. [11]
    De Boer, R., Segel, L.A., Perelson, A.S. Pattern formation in one-and two-dimensional shape space models of the immune system. J. theor. Biol., 155: 295–333, 1992Google Scholar
  12. [12]
    De Castro, L.N., Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag 2002Google Scholar
  13. [13]
    Farmer, J.D. A Rosetta stone for connectionism. Physica D, 42: 153–187, 1990MathSciNetCrossRefGoogle Scholar
  14. [14]
    Farmer, J.D., Packard, N.H., Perelson, A.S. The immune system, adaptation, and machine learning. Physica D, 22:187–204, 1986MathSciNetCrossRefGoogle Scholar
  15. [15]
    Faro, J., Velasco, S. Studies on a recent class of network models of the immune system. J. theor. Biol., 164: 271–290, 1993CrossRefGoogle Scholar
  16. [16]
    Faro, J., Carneiro, J. Velasco, S. Further studies on the problem of immune network modelling. J. theor. Biol., 184: 405–421, 1997CrossRefGoogle Scholar
  17. [17]
    Gilbert, C.J., Routen, T.W. Associative memory in an immune-based system. Proc. of 12th Nat. Conf. on Artiff. Intelligence, AAAI Press 1994, 852–857Google Scholar
  18. [18]
    Hart, E., Ross, P. Studies on the implications of shape-space models for idiotypic networks. In: Nicosia et. al. ICARIS 2004, LNCS 3239, Springer-Verlag 2004, pp. 413–426Google Scholar
  19. [19]
    Hunt, J. Cooke, D. Learning using an artificial immune system. J. of Network and Computer Applications. 19: 189–212, 1996CrossRefGoogle Scholar
  20. [20]
    Hofmeyr, S.A. Introduction to the immune system. In: L.A. Segel, I. Cohen (eds.) Design Principles for the Immune System and Other Distributed Autonomous Systems, Santa Fe Institute Studies in the Sciences of Complexity. New York: Oxford University Press 2001Google Scholar
  21. [21]
    Itaya, S., Uezu, T. Analysis of an immune network dynamical system model with a small number of degrees of freedom. Progress in Theoretical Physics, 104: 903–924, 2000CrossRefGoogle Scholar
  22. [22]
    Jerne N.J. Idiotypic networks and other preconceived ideas. Immunol. Rev. 79:5–25,1984CrossRefGoogle Scholar
  23. [23]
    Neal, M. Meta-stable memory in an artificial immune network. In: J. Timmis et al. (eds.), ICARIS 2004, LNCS 2787, Springer-Verlag 2003, pp. 168–180Google Scholar
  24. [24]
    Perelson, A.S., Oster, G.F. The shape space model. J. theor. Biol., 81: 645–670, 1979MathSciNetCrossRefGoogle Scholar
  25. [25]
    Perelson, A., Weisbuch, G. Immunology for physicists. Reviews of Modern Physics, 69: 1219–1265, 1977CrossRefGoogle Scholar
  26. [26]
    Stauffer D., Weisbuch, G. High-dimensional simulation of the shape-space model for the immune system. Physica A, 180: 42–52, 1992CrossRefGoogle Scholar
  27. [27]
    Stewart, I., Varela, F. Exploring the connectivity of the immune network. Immunol. Rev. 110: 37–61, 1989CrossRefGoogle Scholar
  28. [28]
    Tieri, P., et al. Memory and selectivity in evolving scale-free immune networks. In: J. Timmis et al. (eds.) ICARIS 2003, LNCS 2787, Springer-Verlag 2003, pp. 93–101Google Scholar
  29. [29]
    Varela, F., Coutinho, A. Second generation immune networks. Immunol. Today, 12: 159–167, 1991Google Scholar
  30. [30]
    Wierzchoń, S.T. Kużelewska, U. Stable cluster formation in an artificial immune system. Proc. of the 1st Internat. Conference on Artificial Immune Systems, ICARIS '2002, University of Kent at Canterbury, 2002, pp. 68–75Google Scholar
  31. [31]
    Younsi, R., Wang, W. A new artificial immune system algorithm for clustering. In: Z.R. Yand et al. (eds.) IDEAL 2004, LNCS 3177, Springer-Verlag 2004, pp. 58–64Google Scholar
  32. [32]
    Zorzenon dos Santos, R.M., Bernardes, A.T. The stable-chaotic transition on cellular automata used to model the immune repertoire. Physica A, 219: 1–19, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Sławomir T. Wierzchoń
    • 1
    • 2
  1. 1.Faculty of Computer ScienceBialystok Technical UniversityBiałystokPoland
  2. 2.Institute of Computer Science of Polish Academy of SciencesWarszawaPoland

Personalised recommendations