Accessibility of information in realtime systems

  • Tomasz Hebisz
  • Eugeniusz Kuriata
Conference paper


In the paper the problem of information's security defined as fulfilment of confidentiality, authenticity and accessibility is presented. The accessibility, as the element of security is especially importand in realtime systems, in which the time of replying to received information is limited, while undelivering the messages right on time is unacceptable. The accessibility of information is fulfiled thought application of error control coding, in particular by using cyclic Reed-Solomon codes.


Information's Accessibility Security Cryptography Error Control Coding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. [1]
    T. Hebisz, Cz. Kościelny. A method of constructing symmetric-key block cryptosystem resistant to manipulations on ciphertext. Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 50, No. 4, 2002.Google Scholar
  2. [2]
    T. Hebisz, E. Kuriata, M. Jackiewicz. Fulfillment of computer security and safety by using symmetric-key block cryptosystem resistant to manipulations on ciphertext. International Conference on Computer Information Systems and Industrial Management Applications CISIM '03, 2003.Google Scholar
  3. [3]
    A. Kiayias, M. Yung Polynomial Reconstruction Based Cryptography. SAC 2001. ICALP 2002. LNCS 2259. pp. 129–133. Springer-Verlag. 2002.Google Scholar
  4. [4]
    A. Kiayias, M. Yung Cryptographic Hardness Based on the Decoding of Reed-Solomon Codes. Springer-Verlag. ICALP 2002. LNCS 2380. pp. 232–243. 2002.Google Scholar
  5. [5]
    Cz. Kościelny, W. Mochnacki. Kryptografia z zastosowaniem kodów cyklicznych. II Krajowa Konferencja Naukowo-Techniczna „Przetwarzanie sygnałów w telekomunikacji, sterowaniu i kontroli”, Vol. 1, pp. 20–23, 1986.Google Scholar
  6. [6]
    Cz. Kościelny. Computing in the composite GF(qm) of characteristic 2 formed by means of an irreducible binomial, International Journal of Applied Mathematics and Computer Science, Vol. 8, No. 3, pp. 671–680, 1998.Google Scholar
  7. [7]
    Cz. Kościelny, T. Hebisz. More secure computing in finite fields for cryptographic applications. Mathematical Theory of Networks and Systems MTNS 2000, The fourteenth International Conference, Perpignan, 2000, CD-ROM.Google Scholar
  8. [8]
    E. Krouk. A new Public Key Cryptosystem. Proc. of Sixth Joint Swedish-Ruppian Intern. Workshop on Information Theory, 1993.Google Scholar
  9. [9]
    E. Kuriata. Error correction codes in crytography. VI Intern. conference Wojskowa Konferencja Telekomunikacji i Informatyki”, 1997 (in polish).Google Scholar
  10. [10]
    Y. X. Li, R. H. Deng, X. M. Wang. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems. IEEE Trans. on Information Theory. Vol. 40. pp. 271–273. 1994MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Lidl, H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Prepp, 1986.Google Scholar
  12. [12]
    G. Marsaglia. Statistical tests Diehard. Scholar
  13. [13]
    R. J. McEliece. A Public Key Cryptosystem Based on Algebraic Coding Theory. JPLDSN Progrepp Rept., pp. 42–44, 1978.Google Scholar
  14. [14]
    A. J. Menezes, ed. Application of Finite Fields. Kluwer Academic Publishers, 1993.Google Scholar
  15. [15]
    H. Niederreiter. Knapsak-type cryptosystems and algebraic coding theory, Probl. Control and Inform. Theory, Vol. 15, 1986.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Tomasz Hebisz
    • 1
  • Eugeniusz Kuriata
    • 1
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona Góra

Personalised recommendations