Advertisement

Fast Computation of Approximation Tables

  • Krzysztof Chmiel
Conference paper

Abstract

In the paper are presented results, concerning the linear approximation of arbitrary function f with n binary inputs and m binary outputs. The based on the definition of linear approximation algorithm to compute a single value of the approximation table, is of exponential complexity O((n+m) · 2n).The presented in the paper fast algorithm computes the whole approximation table, in linear time O(n+m) for a single value.

Keywords

Cryptanalysis linear approximation approximation table 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. [1]
    Biham E., Shamir A., “Differential Cryptanalysis of the Data Encryption Standard”, Springer-Verlag, New York 1993.Google Scholar
  2. [2]
    Chmiel K., “Linear Cryptanalysis of the Reduced DES Algorithms”, Proceedings of the Regional Conference on Military Communication and Information Systems'2000 (Zegrze, Oct. 4–6), WIŁ, vol. 1, pp. 111–118, Zegrze 2000.Google Scholar
  3. [3]
    Chmiel K., “Differential Cryptanalysis of the Reduced DES Algorithms”, (In Polish), Studia z Automatyki i Informatyki, vol. 25, pp. 127–146, Poznań 2000.Google Scholar
  4. [4]
    Chmiel K., “Linear Approximation of some S-box Functions”, Proceedings of the Regional Conference on Military Communication and Information Systems 2001 (Zegrze, Oct. 10–12), WIŁ, vol. 1, pp. 211–218, Zegrze 2001.Google Scholar
  5. [5]
    Chmiel K., “On Some Models of Arithmetic Sum Function Linear Approximation”, Proceedings of NATO Regional Conference on Military Communications and Information Systems 2002 (Zegrze, Oct. 9–11), WIŁ, vol. 2, pp. 199–204, Zegrze 2002.Google Scholar
  6. [6]
    Chmiel K., “Linear Approximation of Arithmetic Sum Function”, Proceedings of the 9-th International Conference on Advanced Computer Systems ACS'2002 (Międzyzdroje, Oct. 23–25), vol. 2, pp. 19–28, Szczecin 2002.Google Scholar
  7. [7]
    Chmiel K., “Linear Approximation of Arithmetic Subtraction Function”, Proceedings of NATO Regional Conference on Military Communications and Information Systems 2003 (Zegrze, Oct. 8–10), WIŁ, Zegrze 2003.Google Scholar
  8. [8]
    Chmiel K, “On Arithmetic Subtraction Linear Approximation”, Proceedings of the 10-th International Multi-Conference on Advanced Computer Systems ACS'2003 (Międzyzdroje, Oct. 22–24), Szczecin 2003.Google Scholar
  9. [9]
    Chmiel K., “Linear Approximation of Arithmetic Sum Function”, In Sołdek J. Drobiazgiewicz L. (Eds) Artificial Intelligence and Security in Computing Systems, 9-th International Conference ACS'2002 Międzyzdroje, Poland October 23–25, 2002 Proceedings, Kluwer Academic Publishers, pp. 293–302, Boston/Dordrecht/London 2003.Google Scholar
  10. [10]
    Górska A., Górski K., Kotulski Z., Paszkiewicz A., Szczepański J., “New Experimental Results in Differential — Linear Cryptanalysis of Reduced Variants of DES”, Proceedings of the 8-th International Conference on Advanced Computer Systems ACS'2001, (Mielno), vol. 1, pp. 333–346, Szczecin 2001.Google Scholar
  11. [11]
    Matsui M, “Linear Cryptanalysis Method for DES Cipher”, Advances in Cryptology Eurocrypt'93, 1993.Google Scholar
  12. [12]
    Matsui M., “Linear Cryptanalysis Method for DES Cipher”. Springer-Verlag, New York 1998.Google Scholar
  13. [13]
    Zugaj A., Górski K., Kotulski Z., Szczepański J., Paszkiewicz A., “Extending Linear Cryptanalysis-Theory and Experiments”, Proceedings of the Regional Conference on Military Communication and Information Systems'99 (Zegrze, Oct. 6–8) WIŁ, vol. 2, pp.77–84, Zegrze 1999.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Krzysztof Chmiel
    • 1
  1. 1.Poznań University of TechnologyPoznańPoland

Personalised recommendations