Skip to main content

Low-PMD spun fibers

  • Chapter
Polarization Mode Dispersion

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 1))

  • 890 Accesses

Abstract

In the last ten years there has been an increasing interest in the design and realization of low PMD fibers. This goal can be achieved by properly spinning a fiber when it is still in the hot zone. In this chapter, analytical and numerical results on the design of low-PMD fibers by means of spinning techniques are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, Appl. Opt., 20, 2962–2968 (1981).

    Article  ADS  Google Scholar 

  2. A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, Electron. Lett., 17, 725–726 (1981).

    Article  ADS  Google Scholar 

  3. R. I. Laming and D. N. Payne, J. Lightwave Technol., 7, 2084–2094 (1989).

    Article  ADS  Google Scholar 

  4. I. G. Clarke, Opt. Lett., 18, 158–160 (1993).

    Article  ADS  Google Scholar 

  5. A. Hart, R. G. Huff, and K. L. Walker, U.S. Patent no. 5298047, 1994.

    Google Scholar 

  6. A. Hart, R. G. Huff, and K. L. Walker, U.S. Patent no. 5418881, 1995.

    Google Scholar 

  7. R. E. Schuh, X. Shan, A. S. Siddiqui, and E. S. R. Sikora, Proc. OFMC’97 122–125 (1997).

    Google Scholar 

  8. R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol., 16, 1583–1588 (1998).

    Article  ADS  Google Scholar 

  9. M. J. Li and D. A. Nolan, Opt. Lett., 23, 1659–1661 (1998).

    Article  ADS  Google Scholar 

  10. K. Walker, Tech. Digest OFC (paper WJ4), Atlanta (GA), 2003.

    Google Scholar 

  11. J. G. Ellison and A. S. Siddiqui, IEE Proc.-Optoelectron., 146, 137–141 (1999).

    Article  Google Scholar 

  12. J. G. Ellison and A. S. Siddiqui, IEE Proc.-Optoelectron., 148, 176–182 (2001).

    Article  Google Scholar 

  13. M. Ferrario, P. Martelli, S. Pietralunga, and M. Martinelli, Tech. Digest. OFC (paper WJ3), Atlanta (GA), 2003.

    Google Scholar 

  14. R. Ulrich and A. Simon, Appl. Opt., 18, 2241–2251 (1979).

    Article  ADS  Google Scholar 

  15. S. C. Rashleigh, J. Lightwave Technol., 1, 312–331 (1983).

    Article  ADS  Google Scholar 

  16. H. Kogelnik, R. M. Jopson, and L. E. Nelson, Polarization-Mode Dispersion I. P. Kaminov and T. Li, editors (Academic Press, San Diego, 2002).

    Google Scholar 

  17. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol., 14, 148–157 (1996).

    Article  ADS  Google Scholar 

  18. A. J. Barlow and D. N. Payne, J. Quantum Electron., 19, 834–839 (1983).

    Article  ADS  Google Scholar 

  19. D. Sarchi and G. Roba, Tech. Digest OFC (paper WJ2), Atlanta (GA), 2003.

    Google Scholar 

  20. R. E. Schuh, E. S. R. Sikora, N. G. Walker, A. S. Siddiqui, L. M. Gleeson, and D. H. O. Bebbington, Elett. Lett., 28, 1772–1773 (1995).

    Article  Google Scholar 

  21. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett., 28, 1639–1641 (2003).

    Article  ADS  Google Scholar 

  22. A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol., 19, 1502–1512 (2001).

    Article  ADS  Google Scholar 

  23. C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett., 6, 372–374 (1991).

    Article  ADS  Google Scholar 

  24. G. J. Foschini and C. D. Poole, J. Lightwave Technol., 9, 1439–1456 (1991).

    Article  ADS  Google Scholar 

  25. V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients (John Wiley & Sons, New York, 1975).

    MATH  Google Scholar 

  26. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, J. Lightwave Technol., 18, 1389–1394 (2000).

    Article  ADS  Google Scholar 

  27. A. Pizzinat, B. Marks, L. Palmieri, C. Menyuk, and A. Galtarossa, Opt. Lett., 28, 390–392(2003).

    Article  ADS  Google Scholar 

  28. J. Kevorkian and J. D. Cole, Perturbation methods in applied mathematics (Springer-Verlag, New York, 1981).

    MATH  Google Scholar 

  29. M. Wang, T. Li, and S. Jian, Opt. Express, 11, 2403–2410 (2003).

    Article  ADS  Google Scholar 

  30. F. Curti, B. Daino, G. De Marchis, and F. Matera, J. Lightwave Technol., 8, 1162–1166(1990).

    Article  ADS  Google Scholar 

  31. A. Galtarossa and L. Palmieri, Tech. Digest. OFC (paper WA4), Anaheim (CA), 2002.

    Google Scholar 

  32. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, OSA Opt. Lett., 25, 384–386 (2000).

    Article  ADS  Google Scholar 

  33. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, OSA Opt. Lett., 26, 962–964 (2001).

    Article  ADS  Google Scholar 

  34. A. Pizzinat, L. Palmieri, B. S. Marks, C. R. Menyuk, and A. Galtarossa, J. Lightwave Technol., 21, 3355–3363 (2003).

    Article  ADS  Google Scholar 

  35. B. Øksendal, Stochastic Differential Equations, (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  36. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer-Verlag, New York, 1971).

    MATH  Google Scholar 

  37. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett., 27, 692–694 (2002).

    Article  ADS  Google Scholar 

  38. A. Galtarossa, P. Griggio, L. Palmieri, and A. Pizzinat, J. Lightwave Technol., 22, 1127–1136 (2004).

    Article  ADS  Google Scholar 

  39. A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk, J. Lightwave Technol., 21, 1635–1643 (2003).

    Article  ADS  Google Scholar 

  40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: the art of scientific computing (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  41. Y. Tan, J. Yang, W. L. Kath, and C. R. Menyuk, J. Opt. Soc. Am. A, 19, 992–1000 (2002).

    Article  ADS  Google Scholar 

  42. A. Pizzinat, B. S. Marks, L. Palmieri, C. R. Menyuk, and A. Galtarossa, IEEE Ph. Technol Lett., 15, 819–821 (2003).

    Article  ADS  Google Scholar 

  43. C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am. B, 11, 1288–1296 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Galtarossa, A., Griggio, P., Palmieri, L., Pizzinat, A. (2004). Low-PMD spun fibers. In: Galtarossa, A., Menyuk, C.R. (eds) Polarization Mode Dispersion. Optical and Fiber Communications Reports, vol 1. Springer, New York, NY. https://doi.org/10.1007/0-387-26307-1_16

Download citation

Publish with us

Policies and ethics