Skip to main content

Reflectometric measurements of polarization properties in optical-fiber links

  • Chapter
Book cover Polarization Mode Dispersion

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 1))

Abstract

Polarization sensitive reflectometric techniques can be effectively used to perform spatially resolved measurements of polarization properties of fiber optic link — such as birefringence, polarization mode dispersion and polarization dependent loss. In particular, this contribution is focused on polarization sensitive OTDR and provides a survey of its theory and main applications. Special emphasis is given to the characterization of fiber birefringence, that allows to inspect the fiber while cabled and, consequently, to test and improve the cabling process. In addition, the analysis of the birefringence also allows to define reliable mathematical models, which are essential for the design of low polarization mode dispersion fibers. Reflectometric measurements of polarization mode dispersion and polarization dependent loss are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. G. Someda, Electromagnetic waves (Chapman & Hall, Londra, 1998).

    Google Scholar 

  2. D. Marcuse, Bell System Technol. J., 54, 985–995 (1975).

    Google Scholar 

  3. R. Ulrich and A. Simon, Appl. Opt., 18, 2241–2251 (1979).

    Article  ADS  Google Scholar 

  4. S. C. Rashleigh and R. Ulrich, Opt. Lett., 2, 60–62 (1978).

    Article  ADS  Google Scholar 

  5. H. Kogelnik, R. M. Jopson, and L. E. Nelson, Polarization-mode dispersion (in “Optical Fiber Telecommunications, IV B”), I. P. Kaminow and T. Li, editors (Academic Press, San Diego, 2002).

    Google Scholar 

  6. E. Collett, Polarized light, fundamentals and applications (Dekker, New York, 1993).

    Google Scholar 

  7. S. C. Rashleigh, J. Lightwave Technol., 1, 312–331 (1983).

    Article  ADS  Google Scholar 

  8. G. J. Foschini and C. D. Poole, J. Lightwave Technol., 9, 1439–1456 (1991).

    Article  ADS  Google Scholar 

  9. M. Karlsson and J. Brentel, Opt. Lett., 24, 939–941 (1999).

    Article  ADS  Google Scholar 

  10. G. J. Foschini, R. M. Jopson, L. E. Nelson, and H. Kogelnik, J. Lightwave Technol., 17, 1560–1565 (1999).

    Article  ADS  Google Scholar 

  11. M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett., 12, 53–55 (2000).

    Article  ADS  Google Scholar 

  12. G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, IEEE Photon. Technol. Lett., 12, 293–295 (2000).

    Article  ADS  Google Scholar 

  13. A. Bononi and A. Vannucci, Opt. Lett., 26, 675–677 (2001).

    Article  ADS  Google Scholar 

  14. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, Appl. Opt., 20, 2962–2968 (1981).

    Article  ADS  Google Scholar 

  15. M. J. Li and D. A. Nolan, Opt. Lett., 23, 1659–1661 (1998).

    Article  ADS  Google Scholar 

  16. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett., 27, 692–694 (2002).

    Article  ADS  Google Scholar 

  17. A. Pizzinat, B. S. Marks, L. Palmieri, C. R. Menyuk, and A. Galtarossa, IEEE Photon. Technol. Lett., 15, 819–821 (2003).

    Article  ADS  Google Scholar 

  18. A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk, J. Lightwave Technol., 21, 1635–1643 (2003).

    Article  ADS  Google Scholar 

  19. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol., 14, 148–157 (1996).

    Article  ADS  Google Scholar 

  20. P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, J. Opt. Soc. Am. B, 14, 2967–2979 (1997).

    Article  ADS  Google Scholar 

  21. A. J. Rogers, Appl. Opt., 20, 1060–1074 (1981).

    Article  ADS  Google Scholar 

  22. B. Y. Kim and S. S. Choi, Opt. Lett., 6, 578–580 (1981).

    Article  ADS  Google Scholar 

  23. J. N. Ross, Appl. Opt., 21, 3489–3495 (1982).

    Article  ADS  Google Scholar 

  24. M. Nakazawa, IEEE J. Quantum Electron., 19, 854–861 (1983).

    Article  ADS  Google Scholar 

  25. R. E. Schuh, J. G. Ellison, A. S. Siddiqui, and D. H. O. Bebbington, Elett. Lett., 32, 387–388 (1996).

    Article  Google Scholar 

  26. F. Corsi, A. Galtarossa, and L. Palmieri, J. Lightwave Technol., 16, 1832–1843 (1998).

    Article  ADS  Google Scholar 

  27. J. G. Ellison and A. S. Siddiqui, IEEE Photon. Technol. Lett., 10, 246–248 (1998).

    Article  ADS  Google Scholar 

  28. F. Corsi, A. Galtarossa, and L. Palmieri, J. Lightwave Technol., 17, 1172–1178 (1999).

    Article  ADS  Google Scholar 

  29. J. G. Ellison and A. S. Siddiqui, J. Lightwave Technol., 18, 1226–1232 (2000).

    Article  ADS  Google Scholar 

  30. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, OSA Opt. Lett., 25, 384–386 (2000).

    Article  ADS  Google Scholar 

  31. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, OSA Opt. Lett., 25, 1322–1324 (2000).

    Article  ADS  Google Scholar 

  32. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, J. Lightwave Technol., 18, 1389–1394 (2000).

    Article  ADS  Google Scholar 

  33. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, OSA Opt. Lett., 26, 962–964 (2001).

    Article  ADS  Google Scholar 

  34. J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron., 148, 176–182 (2001).

    Article  Google Scholar 

  35. M. Wuilpart, P. Megret, M. Blondel, A.J. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett., 13, 836–838 (2001).

    Article  ADS  Google Scholar 

  36. A. Galtarossa and L. Palmieri, J. Lightwave Technol., 20, 1149–1159 (2002).

    Article  ADS  Google Scholar 

  37. A. Galtarossa and L. Palmieri, J. Lightwave Technol., 21, 1233–1241 (2003).

    Article  ADS  Google Scholar 

  38. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, IEEE Photon. Technol. Lett., 10, 1458–1460 (1998).

    Article  ADS  Google Scholar 

  39. M. Wegmuller, M. Legré, P. Oberson, O. Guinnard, C. Vinegoni, and N. Gisin, IEEE Photon. Technol. Lett., 13, 145–147 (2001).

    Article  ADS  Google Scholar 

  40. M. Wegmuller, M. Legré, and N. Gisin, J. Lightwave Technol., 20, 828–835 (2002).

    Article  ADS  Google Scholar 

  41. N. Zou, M. Yoshida, Y. Namihira, and H. Ito, Electron. Lett., 38, 115–117 (2002).

    Article  Google Scholar 

  42. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, Opt. Lett., 20, 869–871 (1995).

    Article  ADS  Google Scholar 

  43. J. Zhang, V. A. Handerek, I. Çokgör, V. Pantelic, and A. J. Rogers, J. Lightwave Technol., 15, 794–801 (1997).

    Article  ADS  Google Scholar 

  44. T. Gogolla and K. Krebber, J. Lightwave Technol., 18, 320–328 (2000).

    Article  ADS  Google Scholar 

  45. W. W. Hu, K. Inagaki, and Y. Mizuguchi, Opt. Lett., 26, 193–195 (2001).

    Article  ADS  Google Scholar 

  46. E. A. Kuzin, J. M. Estudillo Ayala, B. Ibarra Escamilla, and J. W. Haus, Opt. Lett., 26, 1134–1136 (2001).

    Article  ADS  Google Scholar 

  47. M. Ferrario, P. Martelli, S. Pietralunga, and M. Martinelli, Tech. Digest OFC (paper WJ3), Atlanta (GA), 2003.

    Google Scholar 

  48. H. Sunnerud, B. E. Olsson, and P. A. Andrekson, Elett. Lett., 34, 397–398 (1998).

    Article  Google Scholar 

  49. F. Corsi, A. Galtarossa, and L. Palmieri, J. Opt. Soc. Am. A, 16, 574–583 (1999).

    Article  ADS  Google Scholar 

  50. F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, IEEE Photon. Technol. Lett., 11, 451–453 (1999).

    Article  ADS  Google Scholar 

  51. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, J. Lightwave Technol., 17, 1835–1842 (1999).

    Article  ADS  Google Scholar 

  52. B. Huttner, B. Gisin, and N. Gisin, J. Lightwave Technol., 17, 1843–1847 (1999).

    Article  ADS  Google Scholar 

  53. H. Sunnerud, B. E. Olsson, M. Karlsson, P. A. Andrekson, and J. Brentel, J. Lightwave Technol., 18, 897–904 (2000).

    Article  ADS  Google Scholar 

  54. A. O. Kleivstul and A. S. Sudbø, Electron. Lett., 37, 621–623 (2001).

    Article  Google Scholar 

  55. B. L. Heffner, IEEE Photon. Technol. Lett., 4, 1066–1069 (1992).

    Article  ADS  Google Scholar 

  56. R. M. Jopson, L. E. Nelson, and H. Kogelnik, IEEE Photon. Technol. Lett., 11, 1153–1155 (1999).

    Article  ADS  Google Scholar 

  57. A. Galtarossa and L. Palmieri, J. Lightwave Technol., 22, 1103–1115 (2004).

    Article  ADS  Google Scholar 

  58. J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci., 97, 4541–4550 (2000).

    Article  ADS  Google Scholar 

  59. R. C. Jones, J. Opt. Soc. Am., 37, 107–112 (1947).

    Article  ADS  Google Scholar 

  60. C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett., 6, 372–374 (1991).

    Article  ADS  Google Scholar 

  61. C. D. Poole and J. Nagel, Polarization effects in lightwave systems (in “Optical Fiber Telecommunications”), I. P. Kaminow and T. Koch, editors (Academic Press, San Diego, 1997).

    Google Scholar 

  62. A. Papoulis, Probability, random variables and stochastic processes (McGraw-Hill, New York, 1984).

    MATH  Google Scholar 

  63. R. E. Schuh, E. S. R. Sikora, N. G. Walker, A. S. Siddiqui, L. M. Gleeson, and D. H. O. Bebbington, Elett. Lett., 28, 1772–1773 (1995).

    Article  Google Scholar 

  64. A. C. Hart, R. G. Huff, and K. L. Walker, U. S. Patent 5 298 047, 1994.

    Google Scholar 

  65. L. Arnold, Stochastic differential equations, (J. Wiley, New York, 1974).

    MATH  Google Scholar 

  66. C. W. Gardiner, Handbook of stochastic methods (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  67. B. Øksendal, Stochastic Differential Equations (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  68. A. Galtarossa, L. Palmieri, and D. Sarchi, Tech. Digest. OFC (paper FA2), Los Angeles (CA), 2004.

    Google Scholar 

  69. C. D. Poole and D. L. Favin, J. Lightwave Technol., 12, 917–929 (1994).

    Article  ADS  Google Scholar 

  70. B. L. Heffner, Opt. Lett., 21, 113–115 (1996).

    Article  ADS  Google Scholar 

  71. N. J. Frigo, J. Quantum Elect., 22, 2131–2140 (1986).

    Article  ADS  Google Scholar 

  72. N. Gisin and B. Huttner, Optics Comm., 142, 119–125 (1997).

    Article  ADS  Google Scholar 

  73. Y. Li and A. Yariv, J. Opt. Soc. Am. B, 17, 1821–1827 (2000).

    Article  ADS  Google Scholar 

  74. N. Gisin, Optics Comm., 114, 399–405 (1995).

    Article  ADS  Google Scholar 

  75. A. Mecozzi and M. Shtaif, IEEE Photon. Technol. Lett., 14, 313–315 (2002).

    Article  ADS  Google Scholar 

  76. A. Galtarossa and L. Palmieri, IEEE Photon. Technol. Lett., 15, 57–59 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Galtarossa, A., Palmieri, L. (2004). Reflectometric measurements of polarization properties in optical-fiber links. In: Galtarossa, A., Menyuk, C.R. (eds) Polarization Mode Dispersion. Optical and Fiber Communications Reports, vol 1. Springer, New York, NY. https://doi.org/10.1007/0-387-26307-1_12

Download citation

Publish with us

Policies and ethics