Skip to main content

PMD measurement techniques and how to avoid the pitfalls

  • Chapter

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 1))

Abstract

Since polarization-mode dispersion (PMD) can often be so confusing, it is easy to see howits measurement can be complicated as well. Many different techniques for PMD measurement are available, and often many user-selectable parameters are associated with each measurement. Provided here is a description of the various measurement techniques available along with a discussion of the “best practices” for PMD measurement using these described techniques. Section 1 gives some definitions and lists the parameters that must be measured to fully characterize PMD and introduces the statistical uncertainty inherent in polarization-mode coupled devices. Section 2 describes the various measurement techniques, classifying them as either frequencydomain or time-domain techniques. Section 3 lists several useful practices to reduce measurement errors when measuring PMD. Section 4 discusses the concept of spectral efficiency as a useful figure of merit for describing measurement uncertainty normalized to spectral bandwidth. Finally, Section 5 describes the tradeoffs associated with wavelength step size (for frequency-domain techniques) and provides some “rules-ofthumb” for choosing appropriate wavelength steps in these measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul A. Williams, “Mode-coupled artifact standard for polarization-mode dispersion: Design, assembly, and implementation,” Appl. Opt., 38, 6498–6507 (1999).

    Article  ADS  Google Scholar 

  2. N. Gisin, B. Gisin, J.P. Von der Weid, R. Passy, “Howaccurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett., 8, 1671–1673 (1996).

    Article  ADS  Google Scholar 

  3. Dennis Derickson, Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998).

    Google Scholar 

  4. C.D. Poole, and C.R. Giles, “Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber,” Opt. Lett., 13, 155–157 (1987).

    Article  ADS  Google Scholar 

  5. Yoshinori Namihira and Jun Maeda, “Polarization mode dispersion measurements in optical fibers,” Technical Digest-Symposium on Optical Fiber Measurements, Boulder, 145–150 (1992).

    Google Scholar 

  6. B. Bakhshi, J. Hansryd, P.A. Andrekson, J. Brentel, E. Kolltveit, B.K. Olsson, and M. Karlsson, “Measurement of the Differential Group Delay in Installed Optical Fibers Using Polarization Multiplexed Solitons,” IEEE Phot. Tech. Lett., 11, 593–595 (1999).

    Article  ADS  Google Scholar 

  7. Joseph W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 168.

    Google Scholar 

  8. B.L Heffner, “Influence of optical source characteristics on the measurement of polarizationmode dispersion of highly mode-coupled fibers,” Opt. Lett., 21, 113–115, (1996).

    Article  ADS  Google Scholar 

  9. P.A. Williams, “Accuracy issues in comparisons of time-and frequency-domain polarization mode dispersion measurements,” Technical Digest—Symposium on Optical Fiber Measurements, Boulder, 125–129 (1996).

    Google Scholar 

  10. TIA/EIA FOTP-124. 1999. Polarization-mode dispersion measurement for single-mode optical fibers by interferometric method. Telecommunications Industry Association, Arlington, VA.

    Google Scholar 

  11. N. Cyr, “Polarization-Mode Dispersion Measurement: Generalization of the Interferometric Method to Any Coupling Regime,” J. Lightwave Technol., 22, 794–805 (2004).

    Article  ADS  Google Scholar 

  12. Ph. Oberson, K. Julliard, N. Gisin, R. Passy, and JP Von der Weid, “Interferometric Polarization Mode Dispersion Measurements with Femtoseconds Sensitivity,” Technical Digest—Symposium on Optical Fiber Measurements, Boulder, 143–146 (1996).

    Google Scholar 

  13. N. Cyr, R. Roberge, J. Bradley, G. Amice, F. Audet, and G.W. Schinn, “Interferometric PMD Measurement of a Transatlantic 5512-km Fiber Link Including 119 EDFAs,” Optical Fiber Communications Conference, Session MF, (2004).

    Google Scholar 

  14. N. Cyr, Michel Leclerc and Bernard Ruchet, “PMD measurements in multipath components: The single waveplate example,” Proceedings of Photonics North, Quebec (2002).

    Google Scholar 

  15. P.A. Williams and J.D. Kofler, “Measurement and mitigation of multiple reflection effects on the Differential Group Delay Spectrum of optical components,” Technical Digest—Symposium on Optical Fiber Measurement, Boulder, 173–176 (2002).

    Google Scholar 

  16. C.D. Poole, N.S. Bergano, R.E. Wagner, and H.J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol., LT-7, 1185–1190 (1989).

    Google Scholar 

  17. B.L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett., 4, 1066–1069 (1992).

    Article  ADS  Google Scholar 

  18. R.M. Jopson, “Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers,” IEEE Photon. Technol. Lett., 11, 1153–1155 (1999).

    Article  ADS  Google Scholar 

  19. N. Cyr, A. Girard, and G.W. Schinn, “Stokes Parameter Analysis Method, the Consolidated Test Method for PMD Measurements,” Proceedings National Fiber Optics Engineers Conference, Chicago, 1999.

    Google Scholar 

  20. TIA/EIA FOTP-122. 1999. Polarization-Mode Dispersion Measurement for Single-Mode Optical Fibers by Stokes Parameter Evaluation. Telecommunications Industry Association, Arlington, VA.

    Google Scholar 

  21. R.C. Jones, “A New Calculus for the Treatment of Optical Systems: VI. Experimental Determination of the Matrix,” J. Opt. Soc. Am., 37, 110–112 (1946).

    Article  ADS  Google Scholar 

  22. J.K. Kofler and P.A. Williams, National Institute of Standards and Technology, unpublished.

    Google Scholar 

  23. Mary L. Boas, Mathematical Methods in the Physical Sciences (Wiley, New York, 1983), p. 454.

    MATH  Google Scholar 

  24. Craig D. Poole, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Technol., 12, 917–929 (1994).

    Article  ADS  Google Scholar 

  25. P.A. Williams and C.M. Wang, “Corrections to Fixed Analyzer Measurements of Polarization Mode Dispersion,” J. Lightwave Technol., 16, 534–541 (1998).

    Article  ADS  Google Scholar 

  26. B.L. Heffner, “Single-mode propagation of mutual temporal coherence: equivalence of time and frequency measurement of polarization-mode dispersion,” Opt. Lett., 19, 1104–1106 (1994).

    ADS  Google Scholar 

  27. P.A. Williams, A.J. Barlow, C. Mackechnie, and J.B. Schlager, “Narrowband measurements of polarization-mode dispersion using the modulation phase shift technique,” Technical Digest-Symposium on Optical Fiber Measurements, Boulder, 23–26 (1998).

    Google Scholar 

  28. P.A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett., 35, 1578–1579 (1999).

    Article  Google Scholar 

  29. L.E. Nelson, R.M. Jopson, H. Kogelnik, and J.P. Gordon, “Measurement of polarization mode dispersion vectors using the polarization-dependent signal delay method,” Opt. Express, 6, 158–167 (2000).

    Article  ADS  Google Scholar 

  30. P.A. Williams and J.D. Kofler, “Narrowband Measurement of Differential Group Delay by a Six-State RF Phase-Shift Technique: 40 fs Single-Measurement Uncertainty,” J. Lightwave Technol., 22, 448–456 (2004).

    Article  ADS  Google Scholar 

  31. G.D. Van Wiggeren, A.R. Motamedi, D.M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett., 15, 263–265 (2003).

    Article  ADS  Google Scholar 

  32. G.D. Van Wiggeren, and D.M. Baney, “Swept-Wavelength Interferometric Analysis of Multiport Components,” IEEE Phtoton. Technol. Lett., 15, 1267–1269 (2003).

    Article  ADS  Google Scholar 

  33. L.B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Marcel Dekker, New York, 1983), p. 66.

    Google Scholar 

  34. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Accuracy Enhanced PMD Measurements with Wavelength Scanning Technique,” Technical Digest-Optical Fiber Measurement Conference, Nantes 45–48, (1999).

    Google Scholar 

  35. R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order PMD vectors in optical fibers,” IEEE Photon. Technol. Lett., 11, 1153–1155 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Williams, P. (2004). PMD measurement techniques and how to avoid the pitfalls. In: Galtarossa, A., Menyuk, C.R. (eds) Polarization Mode Dispersion. Optical and Fiber Communications Reports, vol 1. Springer, New York, NY. https://doi.org/10.1007/0-387-26307-1_10

Download citation

Publish with us

Policies and ethics