Skip to main content

Introduction to polarization mode dispersion in optical systems

  • Chapter
Polarization Mode Dispersion

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 1))

Abstract

This introduction covers concepts important to the understanding of polarization mode dispersion (PMD), including optical birefringence, mode coupling in long optical fibers, the Principal States Model, and the time and frequency domain behavior of PMD. Other topics addressed include the concatenation rules, bandwidth of the Principal States, PMD statistics and scaling, PMD system impairments, and PMD outage probability calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresciani, D., F. Curti, F. Matera, and B. Daino, “Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable,” Opt. Lett., 12, 844–846 (1987).

    Article  ADS  Google Scholar 

  2. Barlow, A. J., J. J. Ramskov-Hansen, and D. N. Payner, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt., 20, 2962–2968 (1981).

    Article  ADS  Google Scholar 

  3. Betti, S., F. Curti, B. Daino, G. De Marchis, E. Iannone, and F. Matera, “Evolution of the bandwidth of the principal states of polarization in single-mode fibers,” Opt. Lett., 16, 467–469 (1991).

    Article  ADS  Google Scholar 

  4. Biondini, G. and W. L. Kath, “Applications of Importance Sampling to PMD Problems,” Proc. Venice Summer School on Polarization Mode Dispersion, 2002.

    Google Scholar 

  5. Bruyere, F., “Impact of first-and second-order PMD in optical digital transmission systems,” Opt. Fiber Technol., 2, 269–280 (1996).

    Article  ADS  Google Scholar 

  6. Bülow, H. and G. Veith, “Temporal dynamics of error-rate degradation induced by polarization mode dispersion fluctuation of a field fiber link,” Proc. European Conference on Optical Communication, ECOC’97. 1, 115–118, 1997.

    Google Scholar 

  7. Bülow, H., “Analysis of system outage induced by second order PMD in the presence of chromatic dispersion,” Proc. European Conference on Optical Communication, ECOC’98. Paper WdC5, 1998.

    Google Scholar 

  8. Bülow, H., “System outage probability due to first-and second-order PMD,” IEEE Photon. Technol. Lett., 10, 696–698 (1998).

    Article  ADS  Google Scholar 

  9. Bülow, H., W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers, and W. Weiershausen, “Measurement of the maximum speed of PMD fluctuation in installed field fiber,” Optical Fiber Communications Conference, OFC’99. Technical Digest W:83–85, 1999.

    Google Scholar 

  10. Cameron, J., X. Bao, and J. Stears, “Time evolution of polarization mode dispersion for aerial and buried cables,” Proc. Optical Fiber Comm. Conf., OFC’98. Paper WM 51:249–250, 1998.

    Google Scholar 

  11. Cameron, J., L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett., 10, 1265–1267 (1998).

    Article  ADS  Google Scholar 

  12. Chiang, K. S, “Conditions for obtaining zero polarization-mode dispersion in elliptical-core fibres,” Electron. Lett., 21, 592–593 (1985).

    Article  Google Scholar 

  13. Chiang, K. S, “Linearly birefringent fibres with zero polarization-mode dispersion,” Electron. Lett., 21, 916–917 (1985).

    Article  Google Scholar 

  14. Ciprut, P., B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto, and C. Zimmer, “Secondorder PMD: impact on analog and digital transmissions,” IEEE J. Lightwave Technol., 16, 757–771 (1998).

    Article  ADS  Google Scholar 

  15. Collings, B. C. and L. Boivin, “Nonlinear polarization evolution induced by cross phase modulation and its impact on transmission systems,” IEEE Photon. Technol. Lett., 12, 1582–1584 (2000).

    Article  ADS  Google Scholar 

  16. Corsi, F., A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett., 11, 451–453 (1999).

    Article  ADS  Google Scholar 

  17. Curti, F., B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” IEEE J. Lightwave Technol., LT-8, 1162–1166 (1990).

    Article  ADS  Google Scholar 

  18. Derickson, D., Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998).

    Google Scholar 

  19. Eickhoff, W., Y. Yen, and R. Ulrich, “Wavelength dependence of birefringence in singlemode fiber,” Appl. Opt., 20, 3428–3435 (1981).

    Article  ADS  Google Scholar 

  20. Eyal, A., W. Marshall, M. Tur, and A. Yariv, “Representation of second-order PMD,” Elect. Lett. 35, 1658–1659 (1999).

    Article  Google Scholar 

  21. Foschini, G. J. and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” IEEE J. Lightwave Technol., LT-9, 1439–1456 (1991).

    Article  ADS  Google Scholar 

  22. Foschini, G. J., R. Jopson, L. Nelson and H. Kogelnik, “The statistics of PMD-induced chromatic fiber dispersion,” IEEE J. Lightwave Technol., 17, 1560–1565 (1999).

    Article  ADS  Google Scholar 

  23. Foschini, G. J., L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Probability densities of second-order polarization mode dispersion including polarization dependent chromatic fiber dispersion,” IEEE Photon. Technol. Lett., 12, 293–295 (2000).

    Article  ADS  Google Scholar 

  24. Francia, C., F. Bruyere, D. Penninckx, and M. Chbat, “PMD second-order effects on pulse propagation in single-mode fibers,” IEEE Photon. Technol. Lett., 10, 1739–1741 (1998).

    Article  ADS  Google Scholar 

  25. Galtarossa, A., L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, “Measurement of local beat length and differential group delay in installed single-mode fibers,” IEEE J. Lightwave Technol. 18, 1389–1394 (2000).

    Article  ADS  Google Scholar 

  26. Gisin, N. and J. P. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt Commun., 89, 316–323 (1992).

    Article  ADS  Google Scholar 

  27. Gleeson, L., E. Sikora, and M. J. O’Mahoney, “Experimental and numerical investigation into the penalties induced by second order polarization mode dispersion at 10 Gb/s,” Proc. European Conference on Optical Communication, ECOC’97. 15–18, 1997.

    Google Scholar 

  28. Gordon, J. P. and H. Kogelnik, “PMD Fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA., 97, 4541–4550 (2000).

    Article  ADS  Google Scholar 

  29. Hansryd, J., H. Sunnerud, P.A. Andrekson, and M. Karlsson, “Impact of PMD on four-wave-mixing-induced crosstalk in WDM systems,” IEEE Photon. Technol. Lett., 12, 1261–1263 (2000).

    Article  ADS  Google Scholar 

  30. Haunstein, H. F. and H. M. Kallert, “Influence of PMD on the performance of optical transmission systems in the presence of PDL,” Proc. Optical Fiber Communication Conference, OFC’01. Paper WT4, 2001.

    Google Scholar 

  31. Haus, H. A., “Group velocity, energy, and polarization mode dispersion,” J. Opt. Soc. Am. B, 16, 1863–1867 (1999).

    Article  ADS  Google Scholar 

  32. Heffner, B. L., “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett., 4, 1066–1069 (1992).

    Article  ADS  Google Scholar 

  33. Huard, S., Polarization of Light (Wiley, 1997).

    Google Scholar 

  34. Huttner, B., C. Geiser, and N. Gisin, “Polarization-induced distortions in optical fiber networks with polarization-mode dispersion and polarization-dependent loss,” J. Select. Topics Quant. Electron., 6, 317–329 (2000).

    Article  Google Scholar 

  35. Ito, T., K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, and T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/s/Hz spectral efficiency,” Proc. of European Conference on Optical Communication. Paper PD1.1, 2000.

    Google Scholar 

  36. Jones, R. C., “Newcalculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am., 31, 488 (1941).

    Article  MATH  ADS  Google Scholar 

  37. Jopson, R., L. Nelson, and H. Kogelnik, “Measurement of second-order PMD vectors in optical fibers,” IEEE Photon. Technol. Lett., 11, 1153–1155 (1999).

    Article  ADS  Google Scholar 

  38. Jopson, R., L. Nelson, G. J. Pendock, and A. H. Gnauck, “Polarization-mode dispersion impairment in return-to-zero and nonreturn-to-zero systems,” Proc. Optical Fiber Communication Conference, OFC’99. Paper WE3, 1999.

    Google Scholar 

  39. Jopson, R., L. E. Nelson, H. Kogelnik, and G. J. Foschini, “Probability densities of depolarization associated with second-order PMD in optical fibers,” Proc. Optical Fiber Communication Conference, OFC’01. Paper ThA4, 2001.

    Google Scholar 

  40. Judy, A. F., “Improved PMD stability in optical fibers and cables,” Proc. of the 43rd International Wire & Cable Symposium, 658–664, 1994.

    Google Scholar 

  41. Kaminow, I. P., “Polarization in optical fibers,” IEEE J. Quant. Electron., QE-17, 15–22 (1981).

    Article  ADS  Google Scholar 

  42. Karlsson, M., “Polarization mode dispersion-induced pulse broadening in optical fibers,” Opt. Lett., 23, 688–690 (1998).

    Article  ADS  Google Scholar 

  43. Karlsson, M. and J. Brentel, “Autocorrelation function of the polarization-mode dispersion vector,” Opt. Lett., 24, 939–941 (1999).

    Article  ADS  Google Scholar 

  44. Karlsson, M., J. Brentel, and P. Andrekson, “Simultaneous long-term measurement of PMD on two installed fibers,” Proc. European Conference on Optical Communication, ECOC’99. 2:12, 1999.

    Google Scholar 

  45. Karlsson, M., J. Brentel, and P. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” IEEE J. Lightwave Technol., 18, 941–951 (2000).

    Article  ADS  Google Scholar 

  46. Khosravani, R., Y. Xie, L-S. Yan, Y.W. Song, A. E. Willner, and C. R. Menyuk, “Limitations to first-order PMD compensation in WDM systems due to XPM-induced PSP changes,” Proc. Optical Fiber Communication Conference, OFC’01. Paper WAA5, 2001.

    Google Scholar 

  47. Kim, C. H., E. C. Burrows, and R. M. Jopson, “Polarization dependence of polarization mode dispersion penalties,” private communication, 2001

    Google Scholar 

  48. Kogelnik, H., R. M. Jopson, and L. E. Nelson, “Polarization Mode Dispersion,” In Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic Press, CA, 2000), pp. 725–861.

    Google Scholar 

  49. Kovsh, D. I., S. G. Evangelides, Jr., and A. N. Pilipetskii, “The impact of PMD on nonlinear interchannel crosstalk in DWDM transoceanic systems,” Proc. Optical Fiber Communication Conference, OFC’01. Paper WT1, 2001.

    Google Scholar 

  50. Leppla, R. and W. Weiershausen, “A new point of view regarding higher order PMD pulse distortion: Pulse spreading interpreted as multi path propagation,” Proc. European Conference on Optical Communication, ECOC 2000. 3:211–212 (2000).

    Google Scholar 

  51. Li, M. J. and D. A. Nolan, “Fiber spin designs for producing fibers with low polarization mode dispersion,” Opt. Lett., 23, 1659–1661 (1998).

    Article  ADS  Google Scholar 

  52. Li, M. J., A. F. Evans, D.W. Allen, and D.A. Nolan, “Effects of lateral load and external twist on PMD of spun and unspun fibers,” Proc. European Conference on Optical Communication, ECOC 1999. 2:62–63, 1999.

    Google Scholar 

  53. Mollenauer, L. F. and J. P. Gordon, “Birefringence-mediated timing jitter in soliton transmission,” Opt. Lett., 19, 375–377 (1994).

    Article  ADS  Google Scholar 

  54. Mollenauer, L. F., J P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton Collisions,” Opt. Lett., 20, 2060–2062 (1995).

    Article  ADS  Google Scholar 

  55. Möller, L., L. Boivin, S. Chandrasekhar, and L. L. Buhl, “Impact of cross-phase modulation on PMD compensation,” Proc. IEEE LEOS Annual Meeting 2000. Paper PD1.2, 2000.

    Google Scholar 

  56. Nagel, J. A., M. W. Chbat, L. D. Garrett, J. P. Soigné, N. A. Weaver, B. M. Desthieux, H. Bülow, A. R. McCormick, and R. M. Derosier, “Long-term PMD mitigation at 10 Gb/s and time dynamics over high-PMD installed fiber,” Proc. European Conference on Optical Communication, ECOC 2000. 2:31, 2000.

    Google Scholar 

  57. Nelson, L., R. Jopson, H. Kogelnik, and G. Foschini, “Measurement of depolarization and scaling associated with second-order PMD in optical fibers,” IEEE Photon. Technol. Lett., 11, 1614–1616 (1999).

    Article  ADS  Google Scholar 

  58. Nelson, L., R. Jopson, H. Kogelnik, and J. P. Gordon, “Measurement of polarization mode dispersion vectors using the polarization-dependent signal delay method,” Opt. Express., 6, 158–167 (2000).

    Article  ADS  Google Scholar 

  59. Nelson, L. E. and H. Kogelnik, “Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion,” Opt. Express., 7, 350–361 (2000).

    Article  ADS  Google Scholar 

  60. Nelson, L. E., T. N. Nielsen, and H. Kogelnik, “Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett., 13, 738–740 (2001).

    Article  ADS  Google Scholar 

  61. Norman, S. R., D. N. Payne, M. J. Adams, and A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarization birefringence,” Elect. Lett., 24, 309–311 (1979).

    Article  ADS  Google Scholar 

  62. Penninckx, D. and F. Bruyere, “Impact of the statistics of second-order PMD on system performance,” Optical Fiber Communication Conference, OFC’ 98, Technical Digest. 340–342, 1998.

    Google Scholar 

  63. Peters, J., A. Dori, and F. Kapron, “Bellcore’s fiber measurement audit of existing cable plant for use with high bandwidth systems,” National Fiber Optics Engineers Conference, NFOEC’97, 19–30, 1997.

    Google Scholar 

  64. Poincaré, H., Théorie Mathématique de la Lumière (Guathiers-Villars, Paris, 1892), Vol. 2, Chap. 12.

    Google Scholar 

  65. Poole, C. D. and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Elect. Lett., 22, 1029–1030 (1986).

    Article  Google Scholar 

  66. Poole, C. D., “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett. 13, 687–689 (1988).

    Article  ADS  Google Scholar 

  67. Poole, C. D., N. S. Bergano, R.W. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol., LT-6, 1185–1190 (1988).

    Article  ADS  Google Scholar 

  68. Poole, C. D. and C. R. Giles, “Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber,” Opt. Lett., 13, 155–157 (1988).

    Article  ADS  Google Scholar 

  69. Poole, C. D., R.W. Tkach, A. R. Chraplyvy, and D.A. Fishman, “Fading in lightwave systems due to polarization-mode dispersion,” IEEE Photon. Technol. Lett., 3, 68–70 (1991).

    Article  ADS  Google Scholar 

  70. Poole, C. D., J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett., 16, 372–374 (1991).

    Article  ADS  Google Scholar 

  71. Poole, C. D. and J. A. Nagel, “Polarization effects in lightwave systems,” In Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic Press, CA, 1997). pp. 114–161.

    Chapter  Google Scholar 

  72. Roy, F., C. Francia, F. Bruyere, and D. Penninckx, “A simple dynamic polarization mode dispersion compensator,” Optical Fiber Communication Conference, OFC’99. Technical Digest. 1:275–278, 1999.

    Google Scholar 

  73. Shieh, W, “Principal states of polarization for an optical pulse,” IEEE Photon. Technol. Lett. 11, 677–679 (1999).

    Article  ADS  Google Scholar 

  74. Shtaif, M., A. Mecozzi, and J. Nagel, “Mean-square magnitude of all orders of PMD and the relation with the bandwidth of the principal states,” IEEE Photon. Technol. Lett., 12, 53–55 (2000).

    Article  ADS  Google Scholar 

  75. Stokes, G. G., “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Phil. Soc., 9, 399 (1852).

    ADS  Google Scholar 

  76. Sunnerud, H., M. Karlsson, and P. A. Andrekson, “A comparison between NRZ and RZ data formats with respect to PMD-induced system degradation,” Proc. Optical Fiber Communication Conference, OFC’01. Paper WT3, 2001.

    Google Scholar 

  77. Takahasi, T., T. Imai, and M. Aiki, “Time evolution of polarization mode dispersion in 120 km installed optical submarine cable,” Elect. Lett., 20, 1605–1606 (1993).

    Article  Google Scholar 

  78. Ulrich, R. and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt., 18, 2241–2251 (1979).

    Article  ADS  Google Scholar 

  79. Vengsarkar, A. M., A. H. Moesle, L. G. Cohen, and W. L. Mammel, “Polarization mode dispersion in dispersion shifted fibers: An exact analysis,” Proc. Optical Fiber Communication Conference, OFC’93. Paper ThJ7, 1993.

    Google Scholar 

  80. Waddy, D., P. Lu, L. Chen, and X. Bao, “The measurement of fast state of polarization changes in aerial fiber,” Proc. Optical Fiber Communication Conference, OFC’01. Paper ThA3, 2001.

    Google Scholar 

  81. Wai, P. K. A and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” IEEE J. Lightwave Technol., 14, 148–157 (1996).

    Article  ADS  Google Scholar 

  82. Wang, D. and C. R. Menyuk, “Calculation of penalties due to polarization effects in a long-haul WDM system using a Stokes parameter model,” IEEE J. Lightwave Technol., 19, 487–494 (2001).

    Article  ADS  Google Scholar 

  83. Winzer P. J., H. Kogelnik, C. H. Kim, H. Kim, R. M. Jopson, L. E. Nelson, “Effect of receiver design on PMD outage for RZ and NRZ,” Proc. Optical Fiber Communication Conference, OFC’02. Paper TuI1, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Nelson, L.E., Jopson, R.M. (2004). Introduction to polarization mode dispersion in optical systems. In: Galtarossa, A., Menyuk, C.R. (eds) Polarization Mode Dispersion. Optical and Fiber Communications Reports, vol 1. Springer, New York, NY. https://doi.org/10.1007/0-387-26307-1_1

Download citation

Publish with us

Policies and ethics