Skip to main content

Experimental Models for Understanding the Role of Insulin-like Growth Factor-I and Its Receptor During Development

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 567))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Liu, J. Baker, A.S. Perkins, E.J. Robertson and A. Efstratiadis, Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell,75, 59–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. J. Baker, J.P. Liu, E.J. Robertson and A. Efstratiadis, Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. S.S. Cheah and R.R. Behringer, Contemporary gene targeting strategies for the novice. Mol Biotechnol, 19, 297–304 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. H. Gu, J.D. Marth, P.C. Orban, H. Mossmann and K. Rajewsky, Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265, 103–106 (1994).

    PubMed  CAS  Google Scholar 

  5. A. Nagy, Cre recombinase: the universal reagent for genome tailoring. Genesis, 26, 99–109 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. A.K. Hadjantonakis, M. Pirity and A. Nagy, Cre recombinase mediated alterations of the mouse genome using embryonic stem cells. Methods Mol Biol, 97, 101–122 (1999).

    PubMed  CAS  Google Scholar 

  7. K. Rajewsky, H. Gu, R. Kuhn, U.A. Betz, W. Muller, J. Roes and F. Schwenk, Conditional gene targeting. J Clin Invest, 98, 600–603 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. S. Yakar, J.L. Liu, B. Stannard, A. Butler, D. Accili, B. Sauer and D. LeRoith, Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA, 96, 7324–7329 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. J.L. Liu, S. Yakar and D. LeRoith, Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc Soc Exp Biol Med, 223, 344–351 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. N. Schultze, Y. Burki, Y. Lang, U. Certa and H. Bluethmann, Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol, 14, 499–503 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. G.J. Hannon, RNA interference, Nature, 418, 244–251 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. D.M. Dykxhoorn, C.D. Novina and P.A. Sharp, Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol, 4, 457–467 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver and C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. A.G. Fraser, R.S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann and J. Ahringer, Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. P. Gonczy, C. Echeverri, K. Oegema, A. Coulson, S.J. Jones, R.R. Copley, J. Duperon, J. Oegema, M. Brehm, E. Cassin, E. Hannak, M. Kirkham, S. Pichler, K. Flohrs, A. Goessen, S. Leidel, A.M. Alleaume, C. Martin, N. Ozlu, P. Bork and A.A. Hyman, Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. Y.O. Kim, S.J. Park, R.S. Balaban, M. Nirenberg and Y. Kim, A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci U S A 101, 159–64 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. L.R. Saunders and G.N. Barber, The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 17, 961–983 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. Q.C. Wang, Q.H. Nie and Z.H. Feng, RNA interference: antiviral weapon and beyond. World J Gastroenterol, 9, 1657–1661 (2003).

    PubMed  CAS  Google Scholar 

  19. Y. Shi, Mammalian RNAi for the masses. Trends Genet, 19, 9–12 (2003).

    Article  PubMed  Google Scholar 

  20. S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber and T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J.M. Bosher and M. Labouesse, RNA interference: genetic wand and genetic watchdog. Nat Cell Biol, 2, E31–36 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. N.R. Wall and Y. Shi, Small RNA: can RNA interference be exploited for therapy? Lancet, 362, 1401–1403 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. A. Efstratiadis, Genetics of mouse growth. Int J Dev Biol, 42, 955–976 (1998).

    PubMed  CAS  Google Scholar 

  24. S.Y. Hsu, Cloning of two novel mammalian paralogs of relaxin/insulin family proteins and their expression in testis and kidney. Mol Endocrinol, 13, 2163–2174 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. J. Nakae, Y. Kido and D. Accili, Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev, 22, 818–835 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. A.J. D’Ercole, P. Ye, A.S. Calikoglu and G. Gutierrez-Ospina, The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol, 13, 227–255 (1996).

    Google Scholar 

  27. J. Wang, J. Zhou, L. Powell-Braxton and C. Bondy, Effects of Igf1 gene deletion on postnatal growth patterns. Endocrinology, 140, 3391–3394 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. K.D. Beck, L. Powell-Braxton, H.R. Widmer, J. Valverde and F. Hefti, Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 14, 717–730 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. C.M. Cheng, G. Joncas, R.R. Reinhardt, R. Farrer, R. Quarles, J. Janssen, M.P. McDonald, J.N. Crawley, L. Powell-Braxton and C.A. Bondy, Biochemical and morphometric analyses show that myelination in the insulin-like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci, 18, 5673–5681 (1998).

    PubMed  CAS  Google Scholar 

  30. W.Q. N. Gao, N. Shinsky, G. Ingle, K. Beck, K.A. Elias and L. Powell-Braxton, IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. J Neurobiol, 39, 142–152 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. T.M. DeChiara, A. Efstratiadis and E.J. Robertson, A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature, 345, 78–80 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. T.M. DeChiara, E.J. Robertson and A. Efstratiadis, Parental imprinting of the mouse insulin-like growth factor II gene. Cell, 64, 849–859 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. K.A. Woods, C. Camacho-Hubner, M.O. Savage and A.J. Clark, Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med, 335, 1363–1367 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. K.A. Woods, C. Camacho-Hubner, R.N. Bergman, D. Barter, A.J. Clark and M.O. Savage, Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab, 85, 1407–1411 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. D. LeRoith, C. Bondy, S. Yakar, J.L. Liu and A. Butler, The somatomedin hypothesis: 2001. Endocr Rev, 22, 53–74 (2001).

    Article  CAS  Google Scholar 

  36. A.A. Butler and D. LeRoith, Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology, 142, 1685–1688 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. A._A. Butler and D. LeRoith, Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol, 63, 141–164 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. F. Lupu, J.D. Terwilliger, K. Lee, G.V. Segre and A. Efstratiadis, Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol, 229, 141–162 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. K. Sjogren, J.L. Liu, K. Blad, S. Skrtic, O. Vidal, V. Wallenius, D. LeRoith, J. Tornell, O.G. Isaksson, J.O. Jansson and C. Ohlsson, Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA, 96, 7088–7092 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. J.L. Trejo, E. Carro and I. Torres-Aleman, Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21, 1628–1634 (2001).

    PubMed  CAS  Google Scholar 

  41. M.A. Aberg, N.D. Aberg, H. Hedbacker, J. Oscarsson and P.S. Eriksson, Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci, 20, 2896–2903 (2000).

    PubMed  CAS  Google Scholar 

  42. J.L. Trejo, E. Carro, A. Nunez and I. Torres-Aleman, Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev Neurosci, 13, 365–374 (2002).

    PubMed  CAS  Google Scholar 

  43. E. Carro, J.L. Trejo, A. Nunez and I. Torres-Aleman, Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol, 27, 153–162 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. E. Carro, A. Nunez, S. Busiguina and I. Torres-Aleman, Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci, 20, 2926–2933 (2000).

    PubMed  CAS  Google Scholar 

  45. E. Carro, J.L. Trejo, S. Busiguina and I. Torres-Aleman, Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci, 21, 5678–5684 (2001).

    PubMed  CAS  Google Scholar 

  46. E. Carro, J.L. Trejo, T. Gomez-Isla, D. LeRoith and I. Torres-Aleman, Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med, 8, 1390–1397 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. G. Kempermann and G. Kronenberg, Depressed new neurons-adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry, 54, 499–503 (2003).

    Article  PubMed  Google Scholar 

  48. C.R. Kahn and J. Roth, Cell membrane receptors for polypeptide hormones. Application to the study of disease states in mice, and men. Am J Clin Pathol, 63, 656–667 (1975).

    PubMed  CAS  Google Scholar 

  49. C.R. Kahn and M.F. White, The insulin receptor and the molecular mechanism of insulin action. J Clin Invest, 82, 1151–1156 (1988).

    PubMed  CAS  Google Scholar 

  50. M.F. White and C.R. Kahn, The insulin signaling system. J Biol Chem, 269, 1–4 (1994).

    PubMed  CAS  Google Scholar 

  51. C.R. Kahn and A.B. Goldfine, Molecular determinants of insulin action. J Diabetes Compl, 7, 92–105 (1993).

    Article  CAS  Google Scholar 

  52. R. Pohlmann, G. Nagel, A. Hille, M. Wendland, A. Waheed, T. Braulke and K. von Figura, Mannose 6-phosphate specific receptors: structure and function. Biochem Soc Trans, 17, 15–6 (1989).

    PubMed  CAS  Google Scholar 

  53. T. Braulke, Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res, 31, 242–246 (1999).

    PubMed  CAS  Google Scholar 

  54. A.J. D’Ercole, P. Ye and J.R. O’Kusky, Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides, 36, 209–220 (2002).

    Google Scholar 

  55. J.C. Bruning, D. Gautam, D.J. Burks, J. Gillette, M. Schubert, P.C. Orban, R. Klein, W. Krone, D. Muller-Wieland and C.R. Kahn, Role of brain insulin receptor in control of body weight and reproduction. Science, 289, 2122–2125 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. M. Holzenberger, J. Dupont, B. Ducos, P. Leneuve, A. Geloen, P.C. Even, P. Cervera and Y. Le Bouc, IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421, 182–187 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. D.J. Withers, D.J. Burks, H.H. Towery, S.L. Altamuro, C.L. Flint and M.F. White, Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet, 23, 32–40 (1999).

    PubMed  CAS  Google Scholar 

  58. M. Holzenberger, G. Hamard, R. Zaoui, P. Leneuve, B. Ducos, C. Beccavin, L. Perin and Y. Le Bouc, Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology, 142, 4469–4478 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. M. Zhang, S. Xuan, M.L. Bouxsein, D. von Stechow, N. Akeno, M.C. Faugere, H. Malluche, G. Zhao, C.J. Rosen, A. Efstratiadis and T.L. Clemens, Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem, 277, 44005–44012 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. R.N. Kulkarni, M. Holzenberger, D.Q. Shih, U. Ozcan, M. Stoffel, M. A. Magnuson and C.R. Kahn, beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet, 31, 111–115 (2002).

    PubMed  CAS  Google Scholar 

  61. M.F. White and C.R. Kahn, Cascade of autophosphorylation in the beta-subunit of the insulin receptor. J Cell Biochem, 39, 429–441 (1989).

    Article  PubMed  CAS  Google Scholar 

  62. X.J. Sun, P. Rothenberg, C.R. Kahn, J.M. Backer, E. Araki, P.A. Wilden, D.A. Cahill, B.J. Goldstein and M.F. White, Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature, 352, 73–77 (1991).

    Article  PubMed  CAS  Google Scholar 

  63. E. Araki, B. L. Haag, 3rd and C.R. Kahn, Cloning of the mouse insulin receptor substrate-1 (IRS-1) gene and complete sequence of mouse IRS-1. Biochim Biophys Acta, 1221, 353–356 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. M.E. Patti, X.J. Sun, J.C. Bruening, E. Araki, M.A. Lipes, M.F. White and C. R. Kahn, 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem, 270, 24670–24673 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. S.E. Shoelson, S. Chatterjee, M. Chaudhuri and M.F. White, YMXM motifs of IRS-1 define substrate specificity of the insulin receptor kinase. Proc Natl Acad Sci USA, 89, 2027–2031 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. D.P. Brazil, J. Park and B.A. Hemmings, PKB binding proteins. Getting in on the Akt. Cell, 111, 293–303 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. M. Schmidt, S. Fernandez de Mattos, A. van der Horst, R. Klompmaker, G.J. Kops, E.W. Lam, B.M. Burgering and R.H. Medema, Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol, 22, 7842–7852 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. G.J. Kops, R.H. Medema, J. Glassford, M.A. Essers, P.F. Dijkers, P.J. Coffer, E.W. Lam and B.M. Burgering, Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol, 22, 2025–2036 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. G. Rena, Y.L. Woods, A.R. Prescott, M. Peggie, T.G. Unterman, M.R. Williams and P. Cohen, Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J, 21, 2263–2271 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. B.E. Lavan, W.S. Lane and G.E. Lienhard, The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem, 272, 11439–11443 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. B.E. Lavan, V.R. Fantin, E.T. Chang, W.S. Lane, S.R. Keller and G.E. Lienhard, A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem, 272, 21403–21407 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. V.R. Fantin, B.E. Lavan, Q. Wang, N.A. Jenkins, D.J. Gilbert, N.G. Copeland, S.R. Keller and G.E. Lienhard, Cloning, tissue expression, and chromosomal location of the mouse insulin receptor substrate 4 gene. Endocrinology, 140, 1329–1337 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. D.J. Withers, J.S. Gutierrez, H. Towery, D.J. Burks, J.M. Ren, S. Previs, Y. Zhang, D. Bernal, S. Pons, G.I. Shulman, S. Bonner-Weir and M.F. White, Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 391, 900–904 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. N. Kubota, K. Tobe, Y. Terauchi, K. Eto, T. Yamauchi, R. Suzuki, Y. Tsubamoto, K. Komeda, R. Nakano, H. Miki, S. Satoh, H. Sekihara, S. Sciacchitano, M. Lesniak, S. Aizawa, R. Nagai, S. Kimura, Y. Akanuma, S.I. Taylor and T. Kadowaki, Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes, 49, 1880–1889 (2000).

    PubMed  CAS  Google Scholar 

  75. S.C. Liu, Q. Wang, G.E. Lienhard and S.R. Keller, Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem, 274, 18093–18099 (1999).

    Article  PubMed  CAS  Google Scholar 

  76. V.R. Fantin, Q. Wang, G.E. Lienhard and S.R. Keller, Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab, 278, E127–133 (2000).

    PubMed  CAS  Google Scholar 

  77. J.C. Bruning, J. Winnay, B. Cheatham and C.R. Kahn, Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells. Mol Cell Biol, 17, 1513–1521 (1997).

    PubMed  CAS  Google Scholar 

  78. D.J. Burks, J.F. de Mora, M. Schubert, D. J. Withers, M.G. Myers, H. H. Towery, S.L. Altamuro, C.L. Flint and M.F. White, IRS-2 pathways integrate female reproduction and energy homeostasis. Nature, 407, 377–382 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. J.W. Unger and M. Betz, Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications. Histol Histopathol, 13, 1215–1224 (1998).

    PubMed  CAS  Google Scholar 

  80. H.A. Tissenbaum and G. Ruvkun, An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics, 148, 703–717 (1998).

    PubMed  CAS  Google Scholar 

  81. R. Bohni, J. Riesgo-Escovar, S. Oldham, W. Brogiolo, H. Stocker, B.F. Andruss, K. Beckingham and E. Hafen, Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell, 97, 865–875 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. M. Schubert, D.P. Brazil, D.J. Burks, J.A. Kushner, J. Ye, C.L. Flint, J. Farhang-Fallah, P. Dikkes, X.M. Warot, C. Rio, G. Corfas and M.F. White, Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci, 23, 7084–7092 (2003).

    PubMed  CAS  Google Scholar 

  83. R.A. Ankeny, The natural history of Caenorhabditis elegans research. Nat Rev Genet, 2, 474–479 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. B. Gerisch, C. Weitzel, C. Kober-Eisermann, V. Rottiers and A. Antebi, A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell, 1, 841–851 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. A. Dillin, D.K. Crawford and C. Kenyon Timing requirements for insulin/IGF-1 signaling in C. elegans. Science, 298, 830–834 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. K.D. Kimura, H.A. Tissenbaum, Y. Liu and G. Ruvkun, daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 211, 942–946 (1997).

    Article  Google Scholar 

  87. J. Apfeld and C. Kenyon, Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell, 95, 199–210 (1998).

    Article  PubMed  CAS  Google Scholar 

  88. S.B. Pierce, M. Costa, R. Wisotzkey, S. Devadhar, S.A. Homburger, A. R. Buchman, K.C. Ferguson, J. Heller, D.M. Platt, A.A. Pasquinelli, L. X. Liu, S.K. Doberstein and G. Ruvkun, Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev, 15, 672–686 (2001).

    Article  PubMed  CAS  Google Scholar 

  89. S. Ogg, S. Paradis, S. Gottlieb, G.I. Patterson, L. Lee, H.A. Tissenbaum and G. Ruvkun, The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389, 994–999 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. J.B. Dorman, B. Albinder, T. Shroyer and C. Kenyon, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics, 141, 1399–13406 (1995).

    PubMed  CAS  Google Scholar 

  91. T.E. Johnson, Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science, 249, 908–912 (1990).

    PubMed  CAS  Google Scholar 

  92. S. Paradis and G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev, 12, 2488–2498 (1998).

    PubMed  CAS  Google Scholar 

  93. C.A. Wolkow, M.J. Munoz, D.L. Riddle and G. Ruvkun, Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem, 277, 49591–49597 (2002).

    Article  PubMed  CAS  Google Scholar 

  94. N. Libina, J.R. Berman and C. Kenyon, Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell, 115, 489–502 (2003).

    Article  PubMed  CAS  Google Scholar 

  95. K. Houthoofd, B.P. Braeckman, T.E. Johnson and J.R. Vanfleteren, Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol, 38, 947–954 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. C.T. Murphy, S.A. McCarroll, C.I. Bargmann, A. Fraser, R.S. Kamath, J. Ahringer, H. Li and C. Kenyon, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424, 277–283 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. K. Lin, H. Hsin, N. Libina and C. Kenyon, Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet, 28, 139–145 (2001).

    Article  PubMed  CAS  Google Scholar 

  98. S. Guo, G. Rena, S. Cichy, X. He, P. Cohen and T. Unterman, Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem, 274, 17184–17192 (1999).

    Article  PubMed  CAS  Google Scholar 

  99. G. Rena, S. Guo, S.C. Cichy, T.G. Unterman and P. Cohen, Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem, 274, 17179–17183 (1999).

    Article  PubMed  CAS  Google Scholar 

  100. T. Kitamura, J. Nakae, Y. Kitamura, Y. Kido, W.H. Biggs, 3rd, C.V. Wright, M.F. White, K. C. Arden and D. Accili, The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest, 110, 1839–1847 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. J.H. Thomas and T. Inoue, Methuselah meets diabetes. Bioessays, 20, 113–115 (1998).

    Article  PubMed  CAS  Google Scholar 

  102. R. Fernandez-Almonacid and O.M. Rosen, Structure and ligand specificity of the Drosophila melanogaster insulin receptor. Mol Cell Biol, 7, 2718–2727 (1987).

    PubMed  CAS  Google Scholar 

  103. L. Petruzzelli, R. Herrera, R. Arenas-Garcia, R. Fernandez, M.J. Birnbaum and O.M. Rosen, Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci USA, 83, 4710–4714 (1986).

    Article  PubMed  CAS  Google Scholar 

  104. R. Fernandez, D. Tabarini, N. Azpiazu, M. Frasch and J. Schlessinger, The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J, 14, 3373–3384 (1995).

    PubMed  CAS  Google Scholar 

  105. Y. Ruan, C. Chen, Y. Cao and R.S. Garofalo, The Drosophila insulin receptor contains a novel carboxyl-terminal extension likely to play an important role in signal transduction. J Biol Chem, 270, 4236–4243 (1995).

    Article  PubMed  CAS  Google Scholar 

  106. T. Yamaguchi, R. Fernandez and R.A. Roth, Comparison of the signaling abilities of the Drosophila and human insulin receptors in mammalian cells. Biochemistry, 34, 4962–4968 (1995).

    Article  PubMed  CAS  Google Scholar 

  107. L. Yenush, R. Fernandez, M.G. Myers, Jr., T.C. Grammer, X.J. Sun, J. Blenis, J.H. Pierce, J. Schlessinger and M.F. White, The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol Cell Biol, 16, 2509–2517 (1996).

    PubMed  CAS  Google Scholar 

  108. J. Verdu, M.A. Buratovich, E.L. Wilder and M.J. Birnbaum, Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol, 1, 500–506 (1999).

    Article  PubMed  CAS  Google Scholar 

  109. S. Oldham, R. Bohni, H. Stocker, W. Brogiolo and E. Hafen, Genetic control of size in Drosophila. Philos Trans R Soc Lond B Biol Sci, 355, 945–952 (2000).

    Article  PubMed  CAS  Google Scholar 

  110. S. Oldham, H. Stocker, M. Laffargue, F. Wittwer, M. Wymann and E. Hafen, The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development, 129, 4103–4109 (2002).

    PubMed  CAS  Google Scholar 

  111. E. Hafen, Interplay between growth factor and nutrient signaling: lessons from Drosophila TOR. Curr Top Microbiol Immunol, 279, 153–167 (2004).

    PubMed  CAS  Google Scholar 

  112. W. Brogiolo, H. Stocker, T. Ikeya, F. Rintelen, R. Fernandez and E. Hafen, An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol, 11, 213–221 (2001).

    Article  PubMed  CAS  Google Scholar 

  113. D. J. Clancy, D. Gems, L. G. Harshman, S. Oldham, H. Stocker, E. Hafen, S. J. Leevers and L. Partridge, Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292, 104–106 (2001).

    Article  PubMed  CAS  Google Scholar 

  114. E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J. Flanigan, S.A. Kravitz, CM. Mobarry, K.H. Reinert, K.A. Remington, E.L. Anson, R.A. Bolanos, H.H. Chou, CM. Jordan, A.L. Halpern, S. Lonardi, E.M. Beasley, R.C. Brandon, L. Chen, P.J. Dunn, Z. Lai, Y. Liang, D.R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G.M. Rubin, M.D. Adams and J.C. Venter JC, A whole-genome assembly of Drosophila. Science, 287, 2196–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  115. E.S. Lander et al. Initial sequencing and analysis of the human genome. Nature, 409, 860–921 (2001).

    Article  PubMed  CAS  Google Scholar 

  116. J.C. Venter et al. The sequence of the human genome. Science, 291, 1304–51 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Trejo, J.L., Carro, E., Burks, D.J. (2005). Experimental Models for Understanding the Role of Insulin-like Growth Factor-I and Its Receptor During Development. In: Varela-Nieto, I., Chowen, J.A. (eds) The Growth Hormone/Insulin-Like Growth Factor Axis During Development. Advances in Experimental Medicine and Biology, vol 567. Springer, Boston, MA. https://doi.org/10.1007/0-387-26274-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-26274-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25119-6

  • Online ISBN: 978-0-387-26274-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics