Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 567))

  • 1196 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Donovan and J. Gearhart, The end of the beginning for pluripotent stem cells. Nature, 414, 92–97 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. G.Q. Daley, From embryos to embryoid bodies: generating blood from embryonic stem cells. Ann NY Acad Sci, 996, 122–131 (2003).

    PubMed  Google Scholar 

  3. V. Tropepe, S. Hitoshi, C. Sirard, T.W. Mak, J. Rossant and K D van der, Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron, 30, 65–78 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. B.A. Reynolds, W. Tetzlaff and S.A. Weiss, Multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci, 12, 4565–4574, (1992).

    PubMed  CAS  Google Scholar 

  5. E.K. Nishimura, S.A. Jordan, H. Oshima, H. Yoshida, M. Osawa, M. Moriyama, I.J. Jackson, Y. Barrandon, Y. Miyachi and S. Nishikawa, Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416, 854–860, (2002).

    Article  PubMed  CAS  Google Scholar 

  6. L. Alonso and E. Fuchs, Stem cells of the skin epithelium. Proc Natl Acad Sci USA, 100Suppl 1, 11830–11835, (2003).

    Article  PubMed  CAS  Google Scholar 

  7. M. Engelhardt, M. Lubbert and Y. Guo, CD34(+) or CD34(−): which is the more primitive? Leukemia, 16, 1603–1608 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. J.L. Christensen and I.L. Weissman, Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA, 98, 14541–14546, (2001).

    Article  PubMed  CAS  Google Scholar 

  9. R.M. Seaberg and K.D. van der, Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci, 26, 125–131 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. R. McKay, Stem cells in the central nervous system. Science, 276, 66–71 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Arsenijevic, S. Weiss, B. Schneider and P. Aebischer, Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci, 21, 7194–7202, 2001.

    PubMed  CAS  Google Scholar 

  12. B.A. Reynolds and S. Weiss, Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol, 175, 1–13 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. V. Tropepe, M. Sibilia, B.G. Ciruna, J. Rossant, E.F. Wagner and K.D. van der, Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol, 208, 166–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. S. Ahmed, B.A. Reynolds and S. Weiss, BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci, 15, 5765–5778 (1995).

    PubMed  CAS  Google Scholar 

  15. Y. Arsenijevic and S. Weiss, Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J Neurosci, 18, 2118–2128 (1998).

    PubMed  CAS  Google Scholar 

  16. K.K. Johe, T. G. Hazel, T. Muller, M.M. Dugich-Djordjevic and R.D. McKay, Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev, 10, 3129–3140 (1996).

    PubMed  CAS  Google Scholar 

  17. A. Kalyani, K. Hobson and M.S. Rao, Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol, 186, 202–223 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. T.D. Palmer, J. Takahashi and F.H. Gage, The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 8, 389–404 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. G. Zhu, M..F. Mehler, P.C. Mabie and J.A. Kessler, Developmental changes in progenitor cell responsiveness to cytokines. J Neurosci Res, 56, 131–145 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Guo, M. Lubbert and M. Engelhardt, Stem Cells, 21: 15–20 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. A. Baroffio, M. Hamann, L. Bernheim, M.L. Bochaton-Piallat, G. Gabbiani and C.R. Bader, Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation, 60, 47–57 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. B.M. Deasy, Z. Qu-Peterson, J.S. Greenberger and J. Huard, Mechanisms of muscle stem cell expansion with cytokines. Stem Cells, 20, 50–60 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. J. Frisen, C. B. Johansson, C. Torok, M. Risling and U. Lendahl, Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol, 131, 453–464 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. F. Ciccolini and C.N. Svendsen, Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci, 18, 7869–7880 (1998).

    PubMed  CAS  Google Scholar 

  25. T. Shimazaki, T. Shingo and S. Weiss, The ciliary neurotrophic factor/leukemia inhibitory factor/gpl30 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci, 21, 7642–7653, (2001).

    PubMed  CAS  Google Scholar 

  26. P. Taupin, J. Ray, W.H. Fischer, S.T. Suhr, K. Hakansson, A. Grubb and F.H. Gage, FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron, 28, 385–397 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. H. Toda, M. Tsuji, I. Nakano, K. Kobuke, T. Hayashi, H. Kasahara, J. Takahashi, A. Mizoguchi, T. Houtani, T. Sugimoto, N. Hashimoto, T.D. Palmer, T. Honjo and K. Tashiro, Stem cell-derived neural stem/progenitor cell supporting factor is an autocrine/paracrine survival factor for adult neural stem/progenitor cells. J Biol Chem, 278, 35491–35500 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. C. Vicario-Abejon, M.J. Yusta-Boyo, C. Fernandez-Moreno and F. de Pablo, Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci, 23, 895–906 (2003).

    PubMed  CAS  Google Scholar 

  29. G. Zhu, M.F. Mehler, J. Zhao, Y.S. Yu and J.A. Kessler, Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev Biol, 215, 118–129 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. A.V. Molofsky, R. Pardal, T. Iwashita, I.K. Park, M.F. Clarke and S.J. Morrison, Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. M. Kondo, A.J. Wagers, M.G. Manz, S.S. Prohaska, D.C. Scherer, G.F. Beilhack, J.A. Shizuru and I.L. Weissman, Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol, 21, 759–806 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. J.C. Chen and D.J. Goldhamer, Skeletal muscle stem cells. Reprod Biol Endocrinol, 1, 101 (2003).

    Article  PubMed  Google Scholar 

  33. D.J. Anderson, Stem cells and transcription factors in the development of the mammalian neural crest. FASEB J, 8, 707–713 (1994).

    PubMed  CAS  Google Scholar 

  34. Y. Arsenijevic, Mammalian neural stem-cell renewal: nature versus nurture. Mol Neurobiol, 27, 73–98 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. M.F. Mehler and J.A. Kessler, Progenitor cell biology: implications for neural regeneration. Arch Neurol, 56, 780–784 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. H. Robson, T. Siebler, S.M. Shalet and G.R. Williams, Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res, 52, 137–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. D. Le Roith, C. Bondy, S. Yakar, J.L. Liu and A. Butler, The somatomedin hypothesis: 2001. Endocr Rev, 22, 53–74 (2001).

    Article  PubMed  Google Scholar 

  38. R.A. Frost and C.H. Lang, Regulation of insulin-like growth factor-I in skeletal muscle and muscle cells. Minerva Endocrinol, 28, 53–73 (2003).

    PubMed  CAS  Google Scholar 

  39. M. Majka, A. Janowska-Wieczorek, J. Ratajczak, K. Ehrenman Z. Pietrzkowski, M.A. Kowalska, A.M. Gewirtz, S.G. Emerson and M.Z. Ratajczak, Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood, 97, 3075–3085 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. W. Zumkeller, The insulin-like growth factor system in hematopoietic cells. Leuk Lymphoma, 43, 487–491 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. T. Shimazaki, Y. Arsenijevic, A.K. Ryan, M.G. Rosenfeld and S.A. Weiss, role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J, 18 444–456 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. G. Condorelli, A. Drusco, G. Stassi, A. Bellacosa, R. Roncarati, G. Iaccarino, M.A. Russo, Y. Gu, N. Dalton, C. Chung, M.V. Latronico, C. Napoli, J. Sadoshima, CM. Croce and J. Ross Jr, Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA, 99, 12333–12338 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. R.S. MacDonald, The role of insulin-like growth factors in small intestinal cell growth and development. Horm Metab Res, 31, 103–113 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. O. Brustle, U. Maskos and R. D. McKay, Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron, 15, 1275–1285 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. O. Brustle, K.N. Jones, R.D. Learish, K. Karram, K. Choudhary, O. Wiestler, I.D. Duncan and R.D. McKay, Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 285, 754–756, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. J.D. Flax, S. Aurora, C. Yang, C. Simonin, A.M. Wills, L.L. Billinghurst, M. Jendoubi, R.L. Sidman, J.H. Wolfe, S.U. Kim, and E.Y. Snyder, Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol, 16, 1033–1039, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. CM. Rosario, B.D. Yandava, B. Kosaras, D. Zurakowski, R.L. Sidman and E.Y. Snyder, Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development, 124, 4213–4224 (1997).

    PubMed  CAS  Google Scholar 

  48. J.O. Suhonen, D.A. Peterson J. Ray and F.H. Gage, Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature, 383, 624–627 (1996).

    Article  PubMed  CAS  Google Scholar 

  49. J.M. Auerbach, M.V. Eiden and R.D. McKay, Transplanted CNS stem cells form functional synapses in vivo. Eur J Neurosci, 12, 1696–1704 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. M. Osawa, K. Hanada, H. Hamada and H. Nakauchi, Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273, 242–245 (1996).

    PubMed  CAS  Google Scholar 

  51. O. Schultz, M. Sittinger, T. Haeupl and G.R. Burmester, Emerging strategies of bone and joint repair. Arthritis Res, 2, 433–436 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. P. Rama, S. Bonini, A. Lambiase, O. Golisano, P. Paterna, M. De Luca and G. Pellegrini, Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72, 1478–1485 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. M.A. Blasco, H.W. Lee, M.P. Hande, E. Samper, P.M. Lansdorp, R.A. DePinho and C.W. Greider, Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 91, 25–34 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. C.W. Greider, Telomeres, telomerase and senescence. Bioessays, 12, 363–369 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. C.A. Conover, L.A. Dollar, R.L. Hintz, and R.G. Rosenfeld, Insulin-like growth factor I/somatomedin-C (IGF-I/SM-C) and glucocorticoids synergistically regulate mitosis in competent human fibroblasts. J Cell Physiol, 116, 191–197 (1983).

    Article  PubMed  CAS  Google Scholar 

  56. J.J. Cook, K.M. Haynes and G.A. Werther, Mitogenic effects of growth hormone in cultured human fibroblasts. Evidence for action via local insulin-like growth factor I production. J Clin Invest, 81: 206–212 (1988).

    PubMed  CAS  Google Scholar 

  57. C.C. Zhang and H.F. Lodish, Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood, 103, 2513–2521 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. L.Q. Liu, M. Sposato, H.Y. Liu, T. Vaudrain, M.J. Shi, K. Rider, Z. Stevens, J. Visser, H.K. Deng and M. Kraus, Functional cloning of IGFBP-3 from human microvascular endothelial cells reveals its novel role in promoting proliferation of primitive CD34+CD38-hematopoietic cells in vitro. Oncol Res, 13, 359–371 (2003).

    PubMed  Google Scholar 

  59. K.W. Kelley, W.A. Meier, C. Minshall, D.H. Schacher, Q. Liu, R. VanHoy, W. Burgess and R. Dantzer, Insulin growth factor-I inhibits apoptosis in hematopoietic progenitor cells. Implications in thymic aging. Ann NY Acad Sci, 840, 518–524, (1998).

    Article  PubMed  CAS  Google Scholar 

  60. L.M. Wang, A.D. Keegan, W. Li, G.E. Lienhard, S. Pacini, J.S. Gutkind, M.G. Myers, Jr, X.J. Sun, M.F. White and S.A. Aaronson, Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells. Proc Natl Acad Sci USA, 90, 4032–4036 (1993).

    Article  PubMed  CAS  Google Scholar 

  61. N. Hattori, T. Saito, T. Yagyu, B.H. Jiang, K. Kitagawa and C. Inagaki, GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab, 86, 4284–4291 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. B. Varnum-Finney, L. Xu, C. Brashem-Stein, C. Nourigat, D. Flowers, S. Bakkour, W.S. Pear and I.D. Bernstein, Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 6, 1278–1281 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. C. Schaniel, M. Gottar E. Roosnek F. Melchers and A.G. Rolink, Extensive in vivo self-renewal, long-term reconstitution capacity, and hematopoietic multipotency of Pax5-deficient precursor B-cell clones. Blood, 99, 2760–2766, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. M.S. Pampusch, E. Kamanga-Sollo, M.E. White, M.R. Hathaway and W.R. Dayton, Effect of recombinant porcine IGF-binding protein-3 on proliferation of embryonic porcine myogenic cell cultures in the presence and absence of 1GF-I. J Endocrinol, 176, 227–235, 2003.

    Article  PubMed  CAS  Google Scholar 

  65. A. Gritti, L. Cova, E.A. Parati, R. Galli and A.L. Vescovi, Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS. Neurosci Lett, 185, 151–154, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. D.H. Rowitch, B. Jacques, S.M. Lee, J.D. Flax, E.Y. Snyder and A.P. McMahon, Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci, 19, 8954–8965 (1999).

    PubMed  CAS  Google Scholar 

  67. R.J. Wechsler-Reya and M.P. Scott, Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron, 22, 103–114 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. M.K. Carpenter, X. Cui, Z.Y. Hu, J. Jackson, S. Sherman, A. Seiger and L.U. Wahlberg, In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol, 158, 265–278 (1999).

    Article  PubMed  CAS  Google Scholar 

  69. S. Hitoshi, T. Alexson, V. Tropepe, D. Donoviel, A.J. Elia, J.S. Nye, R.A. Conlon, T.W. Mak, A. Bernstein and K.D. van der, Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev, 16, 846–858 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. A.J. Fischer, B.D. Dierks and T.A. Reh, Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development, 129, 2283–2291 (2002).

    PubMed  CAS  Google Scholar 

  71. E. Marshman and C.H. Streuli, Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function. Breast Cancer Res, 4, 231–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. D.J. Flint, J. Beattie and G.J. Allan, Modulation of the actions of IGFs by IGFBP-5 in the mammary gland. Horm Metab Res, 35, 809–815 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. R.A. Moorehead, C.V. Hojilla, B.I. De, G.A. Wood, J.E. Fata, E.D. Adamson, K.L. Watson, D.R. Edwards and R. Khokha, Insulin-like growth factor-II regulates PTEN expression in the mammary gland. J Biol Chem, 278, 50422–50427 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. S. Neuenschwander, A. Schwartz, T.L. Wood, C.T. Roberts Jr, L. Hennighausen and D. LeRoith, Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J Clin Invest, 97, 2225–2232 (1996).

    PubMed  CAS  Google Scholar 

  75. W. Ruan and D.L. Kleinberg, Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology, 140, 5075–5081 (1999).

    Article  PubMed  CAS  Google Scholar 

  76. S. Deeks, J. Richards and S. Nandi, Maintenance of normal rat mammary epithelial cells by insulin and insulin-like growth factor 1. Exp Cell Res, 174, 448–460 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. A. Herrler, C.A. Krusche and H.M. Beier, Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod, 59, 1302–1310 (1998).

    Article  PubMed  CAS  Google Scholar 

  78. A.D. Lighten, G.E. Moore, R.M. Winston and K. Hardy, Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture Hum Reprod, 13, 3144–3150 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. T.C. Lin, J.M. Yen, K.B. Gong, T.T. Hsu and L.R. Chen, IGF-l/IGFBP-1 increases blastocyst formation and total blastocyst cell number in mouse embryo culture and facilitates the establishment of a stem-cell line. BMC Cell Biol, 4, 14 (2003).

    Article  PubMed  Google Scholar 

  80. Y. Pei, J. Ma, X. Zhang and W. Ji, Serum-free culture of rhesus monkey embryonic stem cells. Arch Andro, 49, 331–342 (2003).

    CAS  Google Scholar 

  81. J. Baker, J.P. Liu, E.J. Robertson and A. Efstratiadis, Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. J.P. Liu, J. Baker, A.S. Perkins, E.J. Robertson and A. Efstratiadis, Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igflr). Cell, 75, 59–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  83. E. Fuchs and J.A. Segre, Stem cells: a new lease on life. Cell, 100, 143–155 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. C.B. Reid, S.F. Tavazoie and C.A. Walsh, Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development, 124, 2441–2450 (1997).

    PubMed  CAS  Google Scholar 

  85. C.S. Potten and M. Loeffler, Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110, 1001–1020 (1990).

    PubMed  CAS  Google Scholar 

  86. A. Chenn and C.A. Walsh, Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 297, 365–369 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. E.B. Hunziker, J. Wagner and J. Zapf, Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest, 93, 1078–1086 (1994).

    Article  PubMed  CAS  Google Scholar 

  88. C. Ohlsson, B.A. Bengtsson, O.G. Isaksson, T.T. Andreasseri and M.C. Slootweg, Growth hormone and bone. Endocr Rev, 19, 55–79 (1998).

    Article  PubMed  CAS  Google Scholar 

  89. K. Sjogren, J.L. Liu, K. Blad, S. Skrtic, O. Vidal, V. Wallenius, D. LeRoith, J. Tornell, O.G. Isaksson, J.O. Jansson and C. Ohlsson, Liver-derived insulin-like growth factor I (IGF-1) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA, 96, 7088–7092 (1999).

    Article  PubMed  CAS  Google Scholar 

  90. S. Yakar, J.L. Liu, B. Stannard, A. Butler, D. Accili, B. Sauer and D. LeRoith, Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA, 96, 7324–7329 (1999).

    Article  PubMed  CAS  Google Scholar 

  91. S.E. Tollefsen, J.L. Sadow and P. Rotwein, Coordinate expression of insulin-like growth factor II and its receptor during muscle differentiation. Proc Natl Acad Sci USA, 86, 1543–1547 (1989).

    Article  PubMed  CAS  Google Scholar 

  92. S.E. Tollefsen, R. Lajara, R.H. McCusker, D.R. Clemmons and P. Rotwein, Insulin-like growth factors (IGF) in muscle development. Expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation. J Biol Chem, 264, 13810–13817 (1989).

    PubMed  CAS  Google Scholar 

  93. Y. Arsenijevic, J.G. Villemure, J.F. Brunet, J.J. Bloch, N. Deglon, C. Kostic, A. Zurn and P. Aebischer, Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol, 170, 48–62 (2001).

    Article  PubMed  CAS  Google Scholar 

  94. T. Reya, S.J. Morrison, M.F. Clarke and I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111 (2001).

    Article  PubMed  CAS  Google Scholar 

  95. L. Del Valle, S. Enam, A. Lassak, J.Y. Wang, S. Croul, K. Khalili and K. Reiss, Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res, 8, 1822–1830 (2002).

    PubMed  Google Scholar 

  96. J.G. Scharf and T. Braulke, The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res, 35, 685–693 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. H.M. Khandwala, I.E. McCutcheon, A. Flyvbjerg and K.E. Friend, The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev, 21, 215–244 (2000).

    Article  PubMed  CAS  Google Scholar 

  98. D.B. Kaufman and W.L. Lowe Jr. Clinical islet transplantation. Curr Diab Rep, 3, 344–350 (2003).

    PubMed  Google Scholar 

  99. A. Bjorklund and O. Lindvall, Cell replacement therapies for central nervous system disorders. Nat Neurosci, 3, 537–544 (2000).

    Article  PubMed  CAS  Google Scholar 

  100. A.C. Bachoud-Levi, P. Remy, J.P. Nguyen, P. Brugieres, J.P. Lefaucheur, C. Bourdet, S. Baudic, V. Gaura, P. Maison, B. Haddad, M.F. Boisse, T. Grandmougin, R. Jeny, P. Bartolomeo, B.G. Dalla, J.D. Degos, F. Lisovoski, A.M. Ergis, E. Pailhous, P. Cesaro, P. Hantraye, and M. Peschanski, Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet, 356, 1975–1979 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. C.R. Freed, M.A. Leehey, M. Zawada, K. Bjugstad, L. Thompson, and R.E. Breeze, Do patients with Parkinson’s disease benefit from embryonic dopamine cell transplantation? J Neurol, 250, III44–III46 (2003).

    Article  PubMed  Google Scholar 

  102. P. Brundin, J. Karlsson, M. Emgard, G.S. Schierle, O. Hansson, A. Petersen and R.F. Castilho, Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant, 9, 179–195 (2000).

    PubMed  CAS  Google Scholar 

  103. A. Bjorklund, S.B. Dunnett, P. Brundin, A.J. Stoessl, C.R. Freed, R.E. Breeze, M. Levivier, M. Peschanski, L. Studer and R. Barker, Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol, 2, 437–445 (2003).

    Article  PubMed  Google Scholar 

  104. A.N. Mamelak, F.A. Eggerding, DS. Oh, E. Wilson, R.L Davis, R. Spitzer, J.A. Hay and W.L. Caton III, Fatal cyst formation after fetal mesencephalic allograft transplant for Parkinson’s disease. J Neurosurg, 89, 592–598 (1998).

    PubMed  CAS  Google Scholar 

  105. E. Montecino-Rodriguez, R. Clark and K. Dorshkind, Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology, 139, 4120–4126 (1998).

    Article  PubMed  CAS  Google Scholar 

  106. I.M. Conboy, M.J. Conboy, G.M. Smythe and T.A. Rando, Notch-mediated restoration of regenerative potential to aged muscle. Science, 302, 1575–1577 (2003).

    Article  PubMed  CAS  Google Scholar 

  107. M. Hill, A. Wernig and G. Goldspink, Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat, 203, 89–99 (2003).

    Article  PubMed  CAS  Google Scholar 

  108. E.D. Rabinovsky, E. Gelir, S. Gelir, H. Lui, M. Kattash, F.J. DeMayo, S.M. Shenaq and R.J. Schwartz, Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J, 17, 53–55 (2003).

    PubMed  CAS  Google Scholar 

  109. E.R. Barton-Davis, D.I. Shoturma, A. Musaro, N. Rosenthal and H.L. Sweeney, Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA, 95, 15603–15607 (1998).

    Article  PubMed  CAS  Google Scholar 

  110. A. Musaro, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E.R. Barton H.L. Sweeney and N. Rosenthal, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet, 27, 195–200 (2001).

    Article  PubMed  CAS  Google Scholar 

  111. M.A. Aberg, N.D. Aberg, H. Hedbacker, J. Oscarsson and P.S. Eriksson, Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci, 20, 2896–2903 (2000).

    PubMed  CAS  Google Scholar 

  112. C.G. Craig, V. Tropepe, CM. Morshead, B.A. Reynolds, S. Weiss and K.D. van der, In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci, 16, 2649–2658 (1996).

    PubMed  CAS  Google Scholar 

  113. R.W. Beuerman and B. Schimmelpfennig, Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol, 69, 196–201 (1980).

    Article  PubMed  CAS  Google Scholar 

  114. T. Nagano, M. Nakamura, K. Nakata, T. Yamaguchi, K. Takase, A. Okahara, T. Ikuse and T. Nishida, Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest Ophthalmol Vis Sci, 44, 3810–3815 (2003).

    Article  PubMed  Google Scholar 

  115. M. Nakamura, K. Ofuji T. Chikama and T. Nishida, Combined effects of substance P and insulin-like growth factor-1 on corneal epithelial wound closure of rabbit in vivo. Curr Eye Res, 16, 275–278 (1997).

    Article  PubMed  CAS  Google Scholar 

  116. T.A. Linkhart, S. Mohan and D.J. Baylink, Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone, 19, 1S–12S (1996).

    Article  PubMed  CAS  Google Scholar 

  117. G. Schmidmaier, B. Wildemann, T. Gabelein, J. Heeger, F. Kandziora, N. P. Haas and M. Raschke, Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand, 74, 604–610 (2003).

    Article  PubMed  Google Scholar 

  118. T. Shimoaka, S. Kamekura, H. Chikuda, K. Hoshi, U.I. Chung, T. Akune, Z. Maruyama, T. Komori, M. Matsumoto, W. Ogawa, Y. Terauchi, T. Kadowaki, K. Nakamura and H. Kawaguchi, Impairment of bone healing by insulin receptor substrate-1 deficiency. J Biol Chem 279, 15314–15322 (2004).

    Article  PubMed  CAS  Google Scholar 

  119. M.G. Jeschke, R.E. Barrow, H.K. Hawkins, K. Yang, R.L. Hayes, B.J. Lichtenbelt, J.R. Perez-Polo and D.N. Herndon, IGF-I gene transfer in thermally injured rats. Gene Ther, 6, 1015–1020 (1999).

    Article  PubMed  CAS  Google Scholar 

  120. K.T. Coschigano, A.N. Holland, M.E. Riders, E.O. List, A. Flyvbjerg and J.J. Kopchick, Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology, 144, 3799–3810 (2003).

    Article  PubMed  CAS  Google Scholar 

  121. M. Holzenberger, J. Dupont, B. Ducos, P. Leneuve, A. Geloen, P.C. Even, P. Cervera and Y. Le Bouc, IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421, 182–187 (2003).

    Article  PubMed  CAS  Google Scholar 

  122. Z. Laron, Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity. Novartis Found Symp, 242, 125–137 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Arsenijevic, Y. (2005). Future Perspectives. In: Varela-Nieto, I., Chowen, J.A. (eds) The Growth Hormone/Insulin-Like Growth Factor Axis During Development. Advances in Experimental Medicine and Biology, vol 567. Springer, Boston, MA. https://doi.org/10.1007/0-387-26274-1_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-26274-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25119-6

  • Online ISBN: 978-0-387-26274-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics