Skip to main content

The Mechanism of Ventilator-induced Lung Injury: Role of Dynamic Alveolar Mechanics

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2005

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Google Scholar 

  2. Rubenfeld GD (2003) Epidemiology of acute lung injury. Crit Care Med 31:S276–S284

    PubMed  Google Scholar 

  3. Pinhu L Whitehead T, Evans T, Griffths M (2003) Ventilator-associated lung injury. Lancet. 361:332–340

    Article  PubMed  Google Scholar 

  4. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury. Lessons from experimental studies. Am J Respir Crit Care Med. 157:294–323

    PubMed  Google Scholar 

  5. Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  Google Scholar 

  6. Putensen C, Baum M, Hormann C (1993) Selecting ventilator settings according to variables derived from the quasi-static pressure/volume relationship in patients with acute lung injury. Anesth Analg 77:436–447

    PubMed  Google Scholar 

  7. Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439

    PubMed  Google Scholar 

  8. Victorino JA, Borges JB, Okamato, et al (2004) Imbalances in regional lung ventilation. A validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800

    Article  PubMed  Google Scholar 

  9. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116(Suppl): 9S–15S

    Article  Google Scholar 

  10. Tangelo E (1972) Local alveolar size and Tran pulmonary pressure in situ and in isolated lungs. Respir Physiology 14:251–266

    Article  Google Scholar 

  11. Daly BDT, Parks GE, Edmonds CH, Hibbs CW, Norman JC (1975) Dynamic alveolar mechanics as studied by videomicroscopy. Respir Physiol 24:217–232

    Article  PubMed  Google Scholar 

  12. Dunnill MS (1967) Effect of lung inflation on alveolar surface area in the dog. Nature 214:1013–1014

    PubMed  Google Scholar 

  13. Flicker E, Lee JS (1974) Equilibrium of force of subpleural alveoli: implications to lung mechanics. J Appl Physiol 36:366–374

    PubMed  Google Scholar 

  14. Forrest JB (1970) The effect of changes in lung volume on the size and shape of alveoli. J Physiol 210:533–547

    PubMed  Google Scholar 

  15. Klingele TG, Staub NC (1970) Alveolar shape changes with volume in isolated, air-filled lobes of cat lung. J Appl Physiol 28:411–414

    PubMed  Google Scholar 

  16. Kuno K, Staub NC (1968) Acute mechanical effects of lung volume changes on artificial microholes in alveolar walls. J Appl Physiol 24:83–92

    PubMed  Google Scholar 

  17. Storey WF, Staub NC (1962) Ventilation of terminal air units. J Appl Physiol 17:391–397

    PubMed  Google Scholar 

  18. Gil J, Weibei ER (1972) Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion. Respir Physiol 15:190–213

    Article  PubMed  Google Scholar 

  19. Gil J, Bachofen H, Gehr P, Weibel ER (1979) Alveolar volume-surface area relation in air and saline-filled lungs fixed by vascular perfusion. J Appl Physiol Respir Environ Exercise Physiol 47:990–1001

    Google Scholar 

  20. Bachofen H, Gehr P, Weibel ER (1979) Alterations of mechanical properties and morphology in excised rabbit lung rinsed with detergent. J Appl Physiol Respir Environ Exercise Physiol 47:1002–1010

    Google Scholar 

  21. Forest JB (1976) Lung tissue plasticity: Morphometric analysis of anisotropic strain in liquid filled lungs. Respir Physiol 27:223–239

    Article  PubMed  Google Scholar 

  22. Carney DE, Bredenberg CE, Schiller HJ, et al (1999) The mechanism of lung volume change during mechanical ventilation. Am J Respir Crit Care Med 160:1697–1702

    Google Scholar 

  23. Smaldone GC, Mitzner W, Itoh H (1983) Role of alveolar recruitment in lung inflation: influence on pressure-volume hysteresis. J Appl Physiol Respir Environ Exercise Physiol 55:1321–1332

    Google Scholar 

  24. Lum H, Huang I, Mitzner W (1990) Morphological evidence for alveolar recruitment during inflation at high transpulmonary pressure. J Appl Physiol 68:2280–2286

    PubMed  Google Scholar 

  25. Mercer RR, Laco JM, Crapo JD (1987) Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships. J Appl Physiol 62:1480–1487

    PubMed  Google Scholar 

  26. Salmon RB, Primiano FP, Saidel GM, Niewoehner DE (1981) Human lung pressure-volume relationships: alveolar collapse and airway closures. J Appl Physiol Respir Environ Exercise Physiol 51:353–362

    Google Scholar 

  27. Moreci AP, Norman JC (1973) Measurements of alveolar sac diameters by incident-light photomicrography. Ann Thorac Surg 15:179–185

    PubMed  Google Scholar 

  28. Boyle J, Englestein ES, Sinoway LI (1977) Mean air space diameter, lung surface area and alveolar surface tension. Respiration 34:241–249

    PubMed  Google Scholar 

  29. Sera T, Fujioka H, Yokota H, et al (2004) Localized compliance of small airways in excised rat lungs using microfocal X-ray tomography. J Appl Physiol 96:1665–1673

    Article  PubMed  Google Scholar 

  30. Soutiere SE, Mitzner W (2004) On defining total lung capacity in the mouse. J Appl Physiol 96:1658–1664

    Article  PubMed  Google Scholar 

  31. Soutiere SE, Tankersley CG, Mitzner W (2004) Differences in alveolar size inbred mouse strains. Respir Physiol Neurobiol 140:283–291

    Article  PubMed  Google Scholar 

  32. Escolar JD, Escolar MA, Guzman J, Roques M (2002) Pressure volume curve and alveolar recruitment/derecruitment. A morphometric model of the respiratory cycle. Histol Histophatol 17:383–392

    Google Scholar 

  33. Yager D, Feldman H, Fung YC (1992) Microscopic vs macroscopic deformation of pulmonary alveolar duct. J Appl Physiol 72:1348–1354

    PubMed  Google Scholar 

  34. Tschumperlin DJ, Margulies SS (1999) Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 86:2026–2033

    PubMed  Google Scholar 

  35. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202

    PubMed  Google Scholar 

  36. Hickling KG (2001) Best compliance during a detrimental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure. A mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    PubMed  Google Scholar 

  37. Pelosi P, Goldner M, McKibben A, et al (2001) Recruitment and derecruitment during acute respiratory failure. An experimental study. Am J Respir Crit Care Med 164:122–130

    PubMed  Google Scholar 

  38. Crotti S, Mascheroni D, Caironi P, et al (2001) Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med 164:131–140

    PubMed  Google Scholar 

  39. Oldmixon EH, Hoppin FG (1991) Alveolar septal folding and lung inflation history. J Appl Physiol 71:2369–2379

    PubMed  Google Scholar 

  40. Gatto LA, Fluck RR, Nieman GF (2004) Alveolar mechanics in the acutely injured lung: Role of alveolar instability in the pathogenesis of ventilator-induced lung injury. Respir Care 49:1045–1055

    PubMed  Google Scholar 

  41. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    PubMed  Google Scholar 

  42. West JB (2000) Respiratory Physiology — The Essentials, 6th ed Lippincott Williams & Wilkins, Philadelphia, p 83

    Google Scholar 

  43. Neumann P, Berglund JE, Mondejar EF, Magnusson A, Hedenstierna G (1998) Dynamics of lung collapse and recruitment during prolonged breathing in porcine lung injury. J Appl Physiol 85:1522–1543

    Google Scholar 

  44. Grasso S, Terragni P, Mascia L, et al (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32:1018–1027

    Article  PubMed  Google Scholar 

  45. Halter JM, Steinberg JM, Schiller HJ, et al (2003) Positive end-expiratory pressure (PEEP) after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626

    Article  PubMed  Google Scholar 

  46. Steinberg J, Schiller HJ, Halter JM, et al (2004) Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med 169:57–63

    Article  PubMed  Google Scholar 

  47. Tremblay L, Valenza F, Riberio SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    PubMed  Google Scholar 

  48. Hotchkiss JR, Simonson DA, Marek DJ, Marini JJ, Dries DJ (2002) Pulmonary microvascular fracture in a patient with acute respiratory distress syndrome. Crit Care Med 30:2368–2370

    Article  PubMed  Google Scholar 

  49. Gajic O, Lee J, Doerr CH, Berrios JC, Myers JL, Hubmayr RD (2003) Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 167:1057–1063

    Article  PubMed  Google Scholar 

  50. Dreyfuss DP, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume an positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DiRocco, J., Carney, D., Nieman, G. (2005). The Mechanism of Ventilator-induced Lung Injury: Role of Dynamic Alveolar Mechanics. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics