Skip to main content

Sublingual Capnometry in Pedatric Patients

  • Conference paper
  • 615 Accesses

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24:517–524

    Article  PubMed  Google Scholar 

  2. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  Google Scholar 

  3. Yu M, Burchell S, Takiguchi SA, McNamara JJ (1996) The relationship of oxygen consumption measured by indirect calorimetry to oxygen delivery in critically ill patients. J Trauma 41:41–48

    PubMed  Google Scholar 

  4. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  Google Scholar 

  5. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  6. Fiddian-Green RG, Pittenger G, Whitehouse WM Jr (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33:39–48

    Article  PubMed  Google Scholar 

  7. Doglio GR, Pusajo JF, Egurrola MA, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19:1037–1040

    PubMed  Google Scholar 

  8. De Backer D, Dubois MJ (2001) Assessment of the microcirculatory flow in patients in the intensive care unit. Curr Opin Crit Care 7:200–203

    Article  PubMed  Google Scholar 

  9. Dantzker DR (1993) The gastrointestinal tract. The canary of the body? Jama 270:1247–1248

    Article  PubMed  Google Scholar 

  10. Chiara O, Pelosi P, Segala M, et al (2001) Mesenteric and renal oxygen transport during hemorrhage and reperfusion: evaluation of optimal goals for resuscitation. J Trauma 51:356–362

    PubMed  Google Scholar 

  11. Deitch EA, Bridges W, Berg R, Specian RD, Granger DN (1990) Hemorrhagic shock-induced bacterial translocation: the role of neutrophils and hydroxyl radicals. J Trauma 30:942–951

    PubMed  Google Scholar 

  12. Bergofsky EH (1964) Determination on tissue O2 tensions by hollow visceral tonometers: effect of breathing enriched O2 mixtures. J Clin Invest 43:193–200

    PubMed  Google Scholar 

  13. Antonsson JB, Boyle CC, 3rd, Kruithoff KL, et al (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259:G519–G523

    PubMed  Google Scholar 

  14. Krafte-Jacobs B, Carver J, Wilkinson JD (1995) Comparison of gastric intramucosal pH and standard perfusional measurements in pediatric septic shock. Chest 108:220–225

    PubMed  Google Scholar 

  15. Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154

    PubMed  Google Scholar 

  16. Duke T, Butt W, South M, Shann F (1997) The DCO2 measured by gastric tonometry predicts survival in children receiving extracorporeal life support. Comparison with other hemodynamic and biochemical information. Royal Children's Hospital ECMO Nursing Team. Chest 111:174–179

    PubMed  Google Scholar 

  17. Bichel T, Kalangos A, Rouge JC (1999) Can gastric intramucosal pH (pHi) predict outcome of paediatric cardiac surgery? Paediatr Anaesth 9:129–134

    Article  PubMed  Google Scholar 

  18. Perez A, Schnitzler EJ, Minces PG (2000) The value of gastric intramucosal pH in the postoperative period of cardiac surgery in pediatric patients. Crit Care Med 28:1585–1589

    PubMed  Google Scholar 

  19. Calvo C, Ruza F, Lopez-Herce J, Dorao P, Arribas N, Alvarado F (1997) Usefulness of gastric intramucosal pH for monitoring hemodynamic complications in critically ill children. Intensive Care Med 23:1268–1274

    Article  PubMed  Google Scholar 

  20. Thorburn K, Durward A, Tibby SM, Murdoch IA (2004) Effects of feeding on gastric tonometric measurements in critically ill children. Crit Care Med 32:246–249

    PubMed  Google Scholar 

  21. Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24:1072–1078

    Article  PubMed  Google Scholar 

  22. Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL (2003) Red blood cell rheology in sepsis. Intensive Care Med 29:1052–1061

    Article  PubMed  Google Scholar 

  23. Groeneveld AB, van Lambalgen AA, van den Bos GC, Bronsveld W, Nauta JJ, Thijs LG (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25:80–88

    PubMed  Google Scholar 

  24. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6:491–499

    Article  PubMed  Google Scholar 

  25. Slaaf DW, Reneman RS, Wiederhielm CA (1987) Cessation and onset of muscle capillary flow at simultaneously reduced perfusion and transmural pressure. Int J Microcirc Clin Exp 6:215–224

    PubMed  Google Scholar 

  26. Groner W, Winkelman JW, Harris AG, et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    PubMed  Google Scholar 

  27. Mathura KR, Bouma GJ, Ince C (2001) Abnormal microcirculation in brain tumours during surgery. Lancet 358:1698–1699

    Article  PubMed  Google Scholar 

  28. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  29. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    PubMed  Google Scholar 

  30. Grundler W, Weil MH, Rackow EC (1986) Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 74:1071–1074

    PubMed  Google Scholar 

  31. Gudipati CV, Weil MH, Gazmuri RJ, Deshmukh HG, Bisera J, Rackow EC (1990) Increases in coronary vein CO2 during cardiac resuscitation. J Appl Physiol 68:1405–1408

    PubMed  Google Scholar 

  32. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI (1986) Difference in acidbase state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315:153–156

    PubMed  Google Scholar 

  33. Desai VS, Weil MH, Tang W, Yang G, Bisera J (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104:1254–1258

    PubMed  Google Scholar 

  34. Noc M, Weil MH, Sun S, Gazmuri RJ, Tang W, Pakula JL (1993) Comparison of gastric luminal and gastric wall PCO2 during hemorrhagic shock. Circ Shock 40:194–199

    PubMed  Google Scholar 

  35. Tang W, Weil MH, Sun S, Noc M, Gazmuri RJ, Bisera J (1994) Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol 76:572–577

    PubMed  Google Scholar 

  36. Desai VS, Weil MH, Tang W, Gazmuri R, Bisera J (1995) Hepatic, renal, and cerebral tissue hypercarbia during sepsis and shock in rats. J Lab Clin Med 125:456–461

    PubMed  Google Scholar 

  37. Gutierrez G, Bismar H, Dantzker DR, Silva N (1992) Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20:451–457

    PubMed  Google Scholar 

  38. Gutierrez G, Palizas F, Doglio G, et al. (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  Google Scholar 

  39. Sato Y, Weil MH, Tang W, et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:558–562

    PubMed  Google Scholar 

  40. Johnson BA, Weil MH, Tang W, Noc M, McKee D, McCandless D (1995) Mechanisms of myocardial hypercarbic acidosis during cardiac arrest. J Appl Physiol 78:1579–1584

    PubMed  Google Scholar 

  41. Nakagawa Y, Weil MH, Tang W, et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843

    PubMed  Google Scholar 

  42. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  PubMed  Google Scholar 

  43. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132

    Article  PubMed  Google Scholar 

  44. Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927

    Article  PubMed  Google Scholar 

  45. Pernat A, Weil MH, Tang W, et al (1999) Effects of hyper-and hypoventilation on gastric and sublingual PCO(2). J Appl Physiol 87:933–937

    PubMed  Google Scholar 

  46. VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  Google Scholar 

  47. Dubin A, Murias G, Estenssoro E, et al (2002) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care 6:514–520

    Article  PubMed  Google Scholar 

  48. Vallet B, Teboul JL, Caiin S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  Google Scholar 

  49. Tugtekin IF, Radermacher P, Theisen M, et al (2001) Increased ileal-mucosal arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766

    Article  PubMed  Google Scholar 

  50. Kapklein MJ (2002) Abstract #75273616. Oral capnometry for quantification of shock in children. APS/SPR Conference, May 4–7. Baltimore, MD

    Google Scholar 

  51. Worhley JD (2004) Abstract #216. Sublingual capnometry in pediatric cardiovascular surgery patients. SCCM — 3rd Critical Care Congress, Feb 20–25. Orlando, FL

    Google Scholar 

  52. Rackow EC, O'Neil P, Astiz ME, Carpati CM (2001) Sublingual capnometry and indexes of tissue perfusion in patients with circulatory failure. Chest 120:1633–1638

    Article  PubMed  Google Scholar 

  53. Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehta, N., Arnold, J. (2005). Sublingual Capnometry in Pedatric Patients. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_46

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_46

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics