Skip to main content

Suspended Animation for Delayed Resuscitation

  • Conference paper
Book cover Yearbook of Intensive Care and Emergency Medicine 2005

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy R, Safar P, Tisherman SA, et al (1996) Suspended animation for delayed resuscitation. Crit Care Med 24(Suppl 2):S24–S47

    Article  PubMed  Google Scholar 

  2. Trunkey D (1991) Initial treatment of patients with extensive trauma. N Engl J Med 324:1259–1263

    PubMed  Google Scholar 

  3. Rhee PM, Acosta J, Bridgeman A, Wang D, Jordan M, Rich N (2000) Survival after emergency department thoracotomy: review of published data from the past 25 years. J Am Coll Surg 190:288–298

    Article  PubMed  Google Scholar 

  4. Hopson LR, Hirsh E, Delgado J, et al (2003) Guidelines for withholding or termination of resuscitation in prehospital traumatic cardiopulmonary arrest. J Am Coll Surg 196:475–481

    Article  PubMed  Google Scholar 

  5. Holcomb JB (2003) Fluid resuscitation in modern combat casualty care: lessons learned from Somalia. J Trauma 54(Suppl 5):S46–S51

    PubMed  Google Scholar 

  6. Manning JE, Katz LM, Pearce LB, et al (2001) Selective aortic arch perfusion with hemoglobin-based oxygen carrier-201 for resuscitation from exsanguinating cardiac arrest in swine. Crit Care Med 29:2067–2074

    Article  PubMed  Google Scholar 

  7. Capone A, Safar P, Radovsky A, Wang YF, Peitzman A, Tisherman SA (1996) Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 min in dogs. J Trauma 40:388–395

    PubMed  Google Scholar 

  8. Tisherman SA, Safar P, Radovsky A, et al (1991) Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours' circulatory arrest induced to enable resuscitative surgery. J Trauma 31:1051–1061

    PubMed  Google Scholar 

  9. Tisherman SA, Safar P, Radovsky A, et al (1990) Deep hypothermic circulatory arrest induced during hemorrhagic shock in dogs: preliminary systemic and cerebral metabolism studies. Curr Surg 47:327–330

    PubMed  Google Scholar 

  10. Tisherman SA, Safar P, Radovsky A, Peitzman A, Sterz F, Kuboyama K (1990) Therapeutic deep hypothermic circulatory arrest in dogs: a resuscitation modality for hemorrhagic shock with ‘irreparable’ injury. J Trauma 30:836–847

    PubMed  Google Scholar 

  11. Nozari A, Safar P, Wu X, et al (2004) Suspended animation can allow survival without brain damage after traumatic exsanguination cardiac arrest of 60 min in dogs. J Trauma 57:1266–1275

    PubMed  Google Scholar 

  12. Nozari A, Safar P, Tisherman S, et al (2004) Suspended animation and plasma exchange enables full neurologic recovery from lethal traumatic exsanguination, even after 2 h period of no-flow. Crit Care Med (Suppl):A9–36 (abst)

    Google Scholar 

  13. Behringer W, Safer P, Wu X, Kentner R, Radovsky A, Tisherman SA (2001) Delayed intra-ischemic aortic cold flush for preservation during prolonged cardiac arrest in dogs. Crit Care Med 29(Suppl):A17–52 (abst)

    Google Scholar 

  14. Behringer W, Safar P, Nozari A, Wu X, Kentner R, Tisherman SA (2004) Intact survival of 120 min cardiac arrest at 10 degree C in Dogs. Cerebral preservation by cold aortic flush. Crit Care Med 29(Suppl):A71–225 (abst)

    Google Scholar 

  15. Behringer W, Prueckner S, Kentner R, et al (2000) Rapid hypothermic aortic flush can achieve survival without brain damage after 30 minutes cardiac arrest in dogs. Anesthesiology 93:1491–1499

    Article  PubMed  Google Scholar 

  16. Behringer W, Prueckner S, Safar P, et al (2000) Rapid induction of mild cerebral hypothermia by cold aortic flush achieves normal recovery in a dog outcome model with 20-minute exsanguination cardiac arrest. Acad Emerg Med 7:1341–1348

    PubMed  Google Scholar 

  17. Behringer W, Safar P, Wu X, et al (2003) Survival without brain damage after clinical death of 60–120 min in dogs using suspended animation by profound hypothermia. Crit Care Med 31:1523–1531

    Article  PubMed  Google Scholar 

  18. Alam HB, Chen Z, Honma K, et al (2004) The rate of induction of hypothermic arrest determines the outcome in a swine model of lethal hemorrhage. Trauma 57:961–969

    Google Scholar 

  19. Nozari A, Safar P, Stezoski W, et al (2004) Suspended animation for 90 min cardiac arrest in dogs with small volume arterial flush and veno-arterial extracorporeal cooling. Crit Care Med 31(Suppl):A9–35 (abst)

    Google Scholar 

  20. Albes JM, Fischer F, Bando T, Heinemann MK, Scheule A, Wahlers T (1997) Influence of the perfusate temperature on lung preservation: is there an optimum? Eur Surg Res 29:5–11

    PubMed  Google Scholar 

  21. Solberg S, Larsen T, Jorgensen L, Sorlie D (1987) Cold induced endothelial cell detachment in human saphenous vein grafts. J Cardiovasc Surg (Torino) 28:571–575

    Google Scholar 

  22. Alam HB, Rhee P, Honma K, et al (2005) The rate of rewarming from profound hypothermic arrest influences the outcome in a swine model of lethal hemorrhage. J Trauma (in press)

    Google Scholar 

  23. Behringer W, Safar P, Kentner R, et al (2002) Antioxidant Tempol enhances hypothermic cerebral preservation during prolonged cardiac arrest in dogs. J Cereb Blood Flow Metab 22:105–117

    Article  PubMed  Google Scholar 

  24. Behringer W, Safar P, Kentner R, et al (2004) Novel solutions for intra-ischemic aortic cold flush for preservation during 30 min cardia arrest in dogs. Crit Care Med 29(Suppl):A71 (abst)

    Google Scholar 

  25. Taylor MJ, Bailes JE, Elrifai AM, et al (1995) A new solution for life without blood. Asanguineous low-flow perfusion of a whole-body perfusate during 3 h of cardiac arrest and profound hypothermia. Circulation 91:431–444

    PubMed  Google Scholar 

  26. Aoki M, Jonas RA, Nomura F, et al (1994) Effects of cerebroplegic solutions during hypothermic circulatory arrest and short-term recovery. J Thorac Cardiovasc Surg 108:291–301

    PubMed  Google Scholar 

  27. Forbess JM, Ibla JC, Lidov HG, et al (1995) University of Wisconsin cerebroplegia in a piglet survival model of circulatory arrest. Ann Thorac Surg 60(Suppl 6):S494–S500

    Article  PubMed  Google Scholar 

  28. Robbins RC, Balaban RS, Swain JA (1990) Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study. J Thorac Cardiovasc Surg 99:878–884

    PubMed  Google Scholar 

  29. Yaffe L, Abbott D, Schulte B (2004) Smart aortic arch catheter: moving suspended animation from the laboratory to the field. Crit Care Med 32(Suppl 2):S51–S55

    Article  PubMed  Google Scholar 

  30. Ehrlich MP, McCullough JN, Zhang N, et al (2002) Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg 73:191–197

    Article  PubMed  Google Scholar 

  31. Tseng EE, Brock MV, Lange MS, et al (1998) Monosialoganglioside GM1 inhibits neurotoxicity after hypothermic circulatory arrest. Surgery 124:298–306

    Article  PubMed  Google Scholar 

  32. Chadha M, Kochanek PM, Safer P, Jenkins L (2002) Proteomc changes in rat brain after 30 min of complete cerebral ischemia with hypothermia treatment. Crit Care Med 30(Suppl):A24 (abst)

    Google Scholar 

  33. White RJ, Albin MS, Verdura J, Locke GE (1966) Prolonged whole-brain refrigeration with electrical and metabolic recovery. Nature 209:1320–1322

    PubMed  Google Scholar 

  34. Ballaux PK, Gourlay T, Ratnatunga CP, Taylor KM (1999) A literature review of cardiopulmonary bypass models for rats. Perfusion 14:411–417

    PubMed  Google Scholar 

  35. Gourlay T, Ballaux PK, Draper ER, Taylor KM (2002) Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat. Perfusion 17: 191–198

    Article  PubMed  Google Scholar 

  36. Mackensen GB, Sato Y, Nellgard B, et al (2001) Cardiopulmonary bypass induces neurologic and neurocognitive dysfunction in the rat. Anesthesiology 95:1485–1491

    Article  PubMed  Google Scholar 

  37. Grocott HP, Mackensen GB, Newman MF, Warner DS (2001) Neurological injury during cardiopulmonary bypass in the rat. Perfusion 16:75–81

    Google Scholar 

  38. Doguet F, Litzler PY, Tamion F, et al (2004) Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model. Ann Thorac Surg 77:2130–2137

    Article  PubMed  Google Scholar 

  39. Senra DF, Katz M, Passerotti GH, et al (2001) A rat model of acute lung injury induced by cardiopulmonary bypass. Shock 16:223–226

    PubMed  Google Scholar 

  40. Sasaki S, Takigami K, Shiiya N, Yasuda K (1996) Partial cardiopulmonary bypass in rats for evaluating ischemia-reperfusion injury. ASAIO J 42:1027–1030

    PubMed  Google Scholar 

  41. Hindman BJ, Moore SA, Cutkomp J, et al (2001) Brain expression of inducible cyclooxygenase 2 messenger RNA in rats undergoing cardiopulmonary bypass. Anesthesiology 95:1380–1388

    Article  PubMed  Google Scholar 

  42. Hayashi Y, Sawa Y, Nishimura M, et al (2000) P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production. J Thorac Cardiovasc Surg 120:558–565

    Article  PubMed  Google Scholar 

  43. Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H (2002) Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation 106:2601–2607

    Article  PubMed  Google Scholar 

  44. Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H (2001) Inducible nitric oxide production is an adaptation to cardiopulmonary bypass-induced inflammatory response. Ann Thorac Surg 72:149–155

    Article  PubMed  Google Scholar 

  45. Fountoulakis M, Hardmeier R, Hoger H, Lubec G (2001) Postmortem changes in the level of brain proteins. Exp Neurol 167:86–94

    Article  PubMed  Google Scholar 

  46. Houston RJ, de Lange F, Kalkman CJ (1904) A new miniature fiber oxygenator for small animal cardiopulmonary bypass. Adv Exp Med Biol 540:313–316

    Google Scholar 

  47. Hamamoto M, Suga M, Nakatani T, et al (2004) Phosphodiesterase type 4 inhibitor prevents acute lung injury induced by cardiopulmonary bypass in a rat model. Eur J Cardiothorac Surg 25:833–838

    Article  PubMed  Google Scholar 

  48. Ma D, Yang H, Lynch J, Franks NP, Maze M, Grocott HP (2003) Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology 98:690–698

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, X., Drabek, T., Kochanek, P. (2005). Suspended Animation for Delayed Resuscitation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_26

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics