Skip to main content

The Role of Active Forebrain and Humoral Systems in Sleep Control

  • Chapter
Book cover Brain Control of Wakefulness and Sleep
  • 1149 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strecker et al. (2000); McCarley (2002); Basheer et al. (2004).

    Google Scholar 

  2. Kronauer et al. (1982).

    Google Scholar 

  3. Borbely (1982).

    Google Scholar 

  4. Dinges et al. (1997).

    Google Scholar 

  5. Reviewed in Fredholm et al. (1999).

    Google Scholar 

  6. Illes et al. (2000).

    Google Scholar 

  7. Drury and Szent-Gyorgyi (1929).

    Google Scholar 

  8. Olah and Stiles (1992).

    Google Scholar 

  9. Phillis and Wu (1981); Newby (1984); Williams (1989); Cunha (2001).

    Google Scholar 

  10. Newby (1984); Dunwiddie (1985); Williams (1989).

    Google Scholar 

  11. Rudolphi et al. (1992); Fredholm (1997); Ongini and Schubert (1998); Von Lubitz (1999); for review see Latini and Pedata (2001).

    Google Scholar 

  12. Schubert et al. (1997).

    Google Scholar 

  13. Rudolphi et al. (1992); Park and Rudolphi (1994); Fredholm (1997).

    Google Scholar 

  14. Heurteaux et al. (1995).

    Google Scholar 

  15. Dunwiddie and Masino (2001).

    Google Scholar 

  16. Ticho and Radulovacki (1991); reviewed in Radulovacki (1985).

    Google Scholar 

  17. Feldberg and Sherwood (1954).

    Google Scholar 

  18. Haulica et al. (1973).

    Google Scholar 

  19. Dunwiddie and Worth (1982); Virus et al. (1983); Radulovacki et al. (1984), Radulovacki (1985); Ticho and Radulovacki (1991).

    Google Scholar 

  20. Chagoya de Sanchez et al. (1993); Benington and Heller (1995).

    Google Scholar 

  21. Portas et al. (1997).

    Google Scholar 

  22. Porkka-Heiskanen et al. (1997).

    Google Scholar 

  23. Porkka-Heiskanen et al. (2000).

    Google Scholar 

  24. Huston et al. (1996).

    Google Scholar 

  25. Fredholm et al. (1994).

    Google Scholar 

  26. Kalinchuk et al. (2003a).

    Google Scholar 

  27. Borbély (1982) and Fineberg et al., (1985) report the effect of wake-fulness on reducing EEG arousal. Brain metabolism during delta SWS is consid-erably less than in wakeful-ness. In humans, a 44% reduction in the cerebral metabolic rate (CMR) of glucose during delta-wave sleep, compared with that during wakefulness, was determined by Maquet et al. (1992), and a 25% reduction in the CMR of O2 was determined by Madsen et al. (1991). Horne (1992) has reviewed metabolism and hyperthermia.

    Google Scholar 

  28. Rosenberg and Li (1995).

    Google Scholar 

  29. Fredholm et al. (2000).

    Google Scholar 

  30. Alanko et al. (2003a); Mackiewicz et al. (2003).

    Google Scholar 

  31. Yao et al. (1997, 2002).

    Google Scholar 

  32. Alanko et al. (2003b).

    Google Scholar 

  33. For hippocampal slices see Fallahi et al. (1996); for forebrain neu-ronal cultures see Rosenberg et al. (2000).

    Google Scholar 

  34. Kalinchuk et al. (2003b).

    Google Scholar 

  35. Rainnie et al. (1994).

    Google Scholar 

  36. Arrigoni et al. (2003).

    Google Scholar 

  37. Olah and Stiles (1995).

    Google Scholar 

  38. See review in Brundege and Dunwiddie (1997).

    Google Scholar 

  39. Bennington et al. (1995); Schwierin et al. (1996).

    Google Scholar 

  40. Strecker et al. (1999, 2000).

    Google Scholar 

  41. Alam et al. (1999).

    Google Scholar 

  42. Thakkar et al. (2003a).

    Google Scholar 

  43. Thakkar et al. (2003b).

    Google Scholar 

  44. Stenberg et al. (2003).

    Google Scholar 

  45. For example, Matsumura et al. (1994); Urade and Hayaishi (1999); Mizoguchi et al. (2001); Scammell et al. (2001); Hayaishi (2002).

    Google Scholar 

  46. Hayaishi (2002).

    Google Scholar 

  47. Mizoguchi et al. (2001).

    Google Scholar 

  48. Satoh et al. (1996, 1998,1999).

    Google Scholar 

  49. Gerashchenko et al. (2000).

    Google Scholar 

  50. Mochizuki et al. (2000).

    Google Scholar 

  51. Scammell et al. (2001).

    Google Scholar 

  52. Morairty et al. (2004).

    Google Scholar 

  53. Scammell et al. (1998).

    Google Scholar 

  54. Roberts et al. (1980).

    Google Scholar 

  55. Pentreath et al. (1990).

    Google Scholar 

  56. Basheer et al. (2001a).

    Google Scholar 

  57. Drummond et al. (2000); Van Dongen et al. (2003).

    Google Scholar 

  58. Gerwins and Fredholm (1992); Freund et al. (1994); Biber et al. (1997).

    Google Scholar 

  59. Biber et al. (1997).

    Google Scholar 

  60. Berridge (1993); Fisher (1995).

    Google Scholar 

  61. Basheer et al. (2002).

    Google Scholar 

  62. Kostyuk and Verkhratsky (1994); Simpson et al. (1995).

    Google Scholar 

  63. Gafni et al. (1997).

    Google Scholar 

  64. Hamada et al. (1999).

    Google Scholar 

  65. Gritti et al. (1993); Semba (2000); Z’abrosky et al. (1999).

    Google Scholar 

  66. Ramesh et al. (2002).

    Google Scholar 

  67. Bohm et al. (1997); Grady et al. (1997).

    Google Scholar 

  68. Souaze (2001).

    Google Scholar 

  69. For substance P see Hershey et al. (1991); for (ß-adrenergic see Collins et al. (1992); for serotonin (5-HT2) see Rydelek-Fitzgerald et al. (1993); for somatostatin (SST2A) see Boudin et al. (2000).

    Google Scholar 

  70. Biber et al. (2001).

    Google Scholar 

  71. O’Hara et al. (1993); Cirelli et al. (1995); Basheer et al. (1997); Chen et al. (1999).

    Google Scholar 

  72. Nie et al. (1998).

    Google Scholar 

  73. Siebenlist et al. (1994); McKinsey et al. (1997).

    Google Scholar 

  74. Basheer et al. (2001b).

    Google Scholar 

  75. Borbély and Tobler (1989); Opp and Krueger (1991, 1994); Krueger and Majde (1994); Xie et al. (1994); Yamamoto et al. (1997).

    Google Scholar 

  76. Gritti et al. (1993); Jones and Mühlethaler (1999).

    Google Scholar 

  77. Lo Conte et al. (1982); Szymusiak (1995); Jones (1993, 1998, 2003b); Semba, (2000).

    Google Scholar 

  78. Nagai et al. (1982); Pearson et al. (1983); Gallagher and Holland (1994); Sarter and Bruno (1997, 2000); Everitt and Robbins(1997).

    Google Scholar 

  79. See reviews by Everitt and Robbins (1997); Wenk (1997); Baxter and Chiba (1999); Perry et al. (1978).

    Google Scholar 

  80. Wiley et al. (1991).

    Google Scholar 

  81. Muir et al. (1996); McGaughy and Sarter (1998).

    Google Scholar 

  82. Buzsáki and Gage (1989); Berntson et al. (2002).

    Google Scholar 

  83. Cordova et al. (2003).

    Google Scholar 

  84. Dialysates of brain homogenates, reviewed in Inoué (1989).

    Google Scholar 

  85. CSF, serum, and emulsion of cerebral cortex, Legendre and Pieron (1913).

    Google Scholar 

  86. Millers et al. (1967).

    Google Scholar 

  87. Obal and Krueger (2003), the present chapter draws on the information in this review.

    Google Scholar 

  88. Krueger has commented, “Every substance thus far identified as being part of the sleep regulatory cascade also has additional biologic activities. This issue of specificity of response elicited by substances within multiple pleiotropic redundant pathways is a central problem in biology. A major challenge to sleep research is to define how and where these molecular steps produce sleep.” Krueger et al. (1998).

    Google Scholar 

  89. Breder et al. (1988, 1993).

    Google Scholar 

  90. See Saper and Sawchenko (2003).

    Google Scholar 

  91. This is a controversial area. The review by Vitkovic et al. (2000) summarizes the studies showing and not showing IL-1 in neurons (strongest evidence in hypothalamus, cortex has mixed results), with weaker evidence for TNF alpha. These authors conclude that the evidence is equivocal for genes in neurons coding for these factors. Renauld and Spengler (2002) present evidence in cultures of primary hippocampal neurons and of tumor cells for TNF mRNA in the cells and protein in the supernatant following alpha 2 adrenergic receptor activation and potassium depolarization. Ringheim et al. (1995) found evidence for IL-6 mRNA in cultured murine cortical neurons.

    Google Scholar 

  92. Krueger and Obal (2003).

    Google Scholar 

  93. Krueger and Majde (2003) have a thoughtful review of the major research questions and issues in cytokines and sleep.

    Google Scholar 

  94. Krueger et al. (1984).

    Google Scholar 

  95. Takeuchi and Akiara (2001).

    Google Scholar 

  96. Reviewed in Sporri et al. (2001).

    Google Scholar 

  97. For example, Breder et al. (1988); as discussed above, evidence for neuronal production of IL-1 beta is not strong.

    Google Scholar 

  98. Reviewed in Krueger et al. (2001).

    Google Scholar 

  99. Krueger (1990).

    Google Scholar 

  100. Opp et al. (1991); Susic and Totic (1989).

    Google Scholar 

  101. Opp et al. (1991).

    Google Scholar 

  102. Luk et al. (1999).

    Google Scholar 

  103. De Sarro et al. (1997).

    Google Scholar 

  104. Imeri et al. (2002).

    Google Scholar 

  105. Slisli and De Beaurepaire (1999).

    Google Scholar 

  106. Terao et al. (1998).

    Google Scholar 

  107. Alam et al. (2001).

    Google Scholar 

  108. Fang et al. (1998).

    Google Scholar 

  109. Lue et al. (1998).

    Google Scholar 

  110. For IL-1 beta see Nguyen et al. (1998); for IL1 beta mRNA see Taishi et al. (1997).

    Google Scholar 

  111. Mackiewicz et al. (1996).

    Google Scholar 

  112. e.g. Uthgenannt et al. (1995).

    Google Scholar 

  113. Nguyen et al. (1998).

    Google Scholar 

  114. Kriegler et al. (1998).

    Google Scholar 

  115. Reviewed by Spriggs et al. (1992).

    Google Scholar 

  116. Breder et al. (1993); Cheng et al. (1994).

    Google Scholar 

  117. See, for example, Yang et al. (2002).

    Google Scholar 

  118. For fever see Saper and Breder (1992); for food intake see Plata-Salaman (2000).

    Google Scholar 

  119. Haack et al. (2001).

    Google Scholar 

  120. Merrill (1992).

    Google Scholar 

  121. Shohzm et al. (1987).

    Google Scholar 

  122. Dickstein et al. (1999).

    Google Scholar 

  123. Takahashi et al. (1996).

    Google Scholar 

  124. Bredow et al. (1997); Floyd and Krueger (1997).

    Google Scholar 

  125. Fang et al. (1997).

    Google Scholar 

  126. Yoshida et al. (2004).

    Google Scholar 

  127. Zhang et al. (1999).

    Google Scholar 

  128. Churchill et al. (2002).

    Google Scholar 

  129. Obal et al. (1992).

    Google Scholar 

  130. Obalet al. (1991).

    Google Scholar 

  131. Obal et al. (2001).

    Google Scholar 

  132. Alt et al. (2002).

    Google Scholar 

  133. Hajdu et al. (2002).

    Google Scholar 

  134. See data and review in Lanneau et al. (2000).

    Google Scholar 

  135. von Economo (1930).

    Google Scholar 

  136. For review see Szymusiak (1995).

    Google Scholar 

  137. Sherin et al. (1996).

    Google Scholar 

  138. Sherin et al. (1998).

    Google Scholar 

  139. See also Steininger et al. (2001).

    Google Scholar 

  140. Szymusiak et al. (1998).

    Google Scholar 

  141. Lu et al. (2000).

    Google Scholar 

  142. Lu et al. (2002).

    Google Scholar 

  143. Schonrock et al. (1991); Yang and Hatton (1997); Seutin et al. (1989).

    Google Scholar 

  144. Gong et al. (2000).

    Google Scholar 

  145. Suntsova et al. (2002).

    Google Scholar 

  146. Chou et al. (2002).

    Google Scholar 

  147. Cullinan and Zaborszky (1991).

    Google Scholar 

  148. Chou et al. (2003).

    Google Scholar 

  149. Strecker et al. (2000).

    Google Scholar 

  150. Chamberlin et al. (2003).

    Google Scholar 

  151. Staiger and Nurnberger (1989).

    Google Scholar 

  152. Saper et al. (2001).

    Google Scholar 

  153. Aldrich (1998); Sinton and McCarley (2001).

    Google Scholar 

  154. Lin et al. (1999).

    Google Scholar 

  155. Chemelli et al. (1999).

    Google Scholar 

  156. Mignot (1998).

    Google Scholar 

  157. Nishino et al. (2000).

    Google Scholar 

  158. Thannickal et al. (2000).

    Google Scholar 

  159. de Lecea et al. (1998); Peyron et al. (1998); van den Pol (1999).

    Google Scholar 

  160. de Lecea et al. (1998).

    Google Scholar 

  161. Sakurai et al. (1998).

    Google Scholar 

  162. de Lecea and colleagues (1998) chose hypocretin as a name to indicate the hypothalamic localization and the similarity to the gut hormone, secretin. Sakurai and colleagues chose orexin because of their initial assumption that the peptides would be tied to feeding behavior. Both names are currently in common use in the literature, although a preferred name will likely emerge. (In general in the English language, shorter names come to predominate over competing longer ones.) We use orexin because we find it simpler and more euphonious, while recognizing others may prefer hypocretin. As used in sleep research, both orexin and hypocretin suffer from an inappropriate derivation relative to the gut and feeding.

    Google Scholar 

  163. Elias et al. (1998); Peyron et al. (1998); Date et al. (1999); Horvath et al. (1999b); Nambu et al. (1999).

    Google Scholar 

  164. Trivedi et al. (1998); Chemelli et al. (1999), citing their own unpublished data.

    Google Scholar 

  165. Zhang et al. (2004).

    Google Scholar 

  166. Bernard et al. (2003).

    Google Scholar 

  167. Hagan et al. (1999); Horvath et al. (1999a); Bourgin et al. (2000).

    Google Scholar 

  168. van den Pol (2002).

    Google Scholar 

  169. Hoang et al. (2003).

    Google Scholar 

  170. Korotkova et al. (2003).

    Google Scholar 

  171. Korotkova et al. (2002).

    Google Scholar 

  172. Brown et al. (2002).

    Google Scholar 

  173. Eriksson et al. (2001).

    Google Scholar 

  174. van den Pol et al. (1998).

    Google Scholar 

  175. Thakkar et al. (1999).

    Google Scholar 

  176. Thakkar et al. (2001).

    Google Scholar 

  177. Taheri et al. (2000).

    Google Scholar 

  178. Strecker et al. (2002).

    Google Scholar 

  179. Espanart et al. (2003).

    Google Scholar 

  180. Yoshida et al. (2001).

    Google Scholar 

  181. Kiyashchenko et al. (2002).

    Google Scholar 

  182. Mice: Hara et al. (2001); Mieda et al. (2003); Rats: Beuckmann et al. (2004).

    Google Scholar 

  183. This was first clearly documented by Passouant and colleagues (1969).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

(2005). The Role of Active Forebrain and Humoral Systems in Sleep Control. In: Brain Control of Wakefulness and Sleep. Springer, Boston, MA. https://doi.org/10.1007/0-387-26270-9_13

Download citation

Publish with us

Policies and ethics