Skip to main content

Explicit Kinetic Relation from “First Principles”

  • Conference paper
Book cover Mechanics of Material Forces

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 11))

Abstract

We study a fully inertial discrete model of a martensitic phase transition which takes into account interactions of first and second nearest neighbors. Although the model is Hamiltonian at the microscale, it generates a nontrivial macroscopic relation between the velocity of the martensitic phase boundary and the conjugate configurational force. The apparent dissipation is due to the induced radiation of lattice waves carrying energy away from the front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Atkinson and N. Cabrera. Motion of a Frenkel-Kontorova dislocation in a one-dimensional crystal. Phys. Rev., 138(3A):763–766, 1965.

    Article  Google Scholar 

  2. J.L. Ericksen. Equilibrium of bars. J. Elast, 5:191–202, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Kresse and L. Truskinovsky. Hamiltonian dynamics of a driven asymmetric kinks: an exact solution. Physica D, 2003. Submitted.

    Google Scholar 

  4. O. Kresse and L. Truskinovsky. Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids, 51(7):1305–1332, 2003.

    Article  MathSciNet  Google Scholar 

  5. S.-C. Ngan and L. Truskinovsky. Thermal trapping and kinetics of martensitic phase boundaries. J. Mech. Phys. Solids, 47:141–172, 1999.

    Article  MathSciNet  Google Scholar 

  6. S.-C. Ngan and L. Truskinovsky. Thermoelastic aspects of nucle-ation in solids. J. Mech. Phys. Solids, 50:1193–1229, 2002.

    Article  MathSciNet  Google Scholar 

  7. L. I. Slepyan. Dynamics of a crack in a lattice. Sov. Phys. Dokl, 26(5):538–540, 1981.

    MATH  Google Scholar 

  8. L. I. Slepyan. Feeding and dissipative waves in fracture and phase transition II. Phase-transition waves. J. Mech. Phys. Solids, 49:513–550, 2001.

    Article  MathSciNet  Google Scholar 

  9. L. I. Slepyan and L. V. Troyankina. Fracture wave in a chain structure. J. Appl. Mech. Techn. Phys., 25(6):921–927, 1984.

    Article  Google Scholar 

  10. L. Truskinovsky. Equilibrium interphase boundaries. Sov. Phys. Dokl., 27:306–331, 1982.

    Google Scholar 

  11. L. Truskinovsky. Dynamics of nonequilibrium phase boundaries in a heat conducting elastic medium. J. Appl. Math. Mech., 51:777–784, 1987.

    Article  MathSciNet  Google Scholar 

  12. L. Truskinovsky. Kinks versus shocks. In Shock Induced Transitions and Phase Structures in General Media, pages 185–229. Springer-Verlag, New York, 1993.

    Google Scholar 

  13. L. Truskinovsky and A. Vainchtein. 2003. In preparation.

    Google Scholar 

  14. L. Truskinovsky and A. Vainchtein. Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B, 67:172103, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Truskinovsky, L., Vainchtein, A. (2005). Explicit Kinetic Relation from “First Principles”. In: Steinmann, P., Maugin, G.A. (eds) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-26261-X_5

Download citation

Publish with us

Policies and ethics