Skip to main content

Peeling Tapes

  • Conference paper
Mechanics of Material Forces

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 11))

Abstract

Two basic peeling problems formulated by Ericksen (1991) are studied, both in statics and in dynamics. While equilibrium is treated variationally, the evolution of the tape tip is modeled as the result of a configurational force balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansini, L. (2000). “Modellazione e analisi del peeling,” Atti Sem. Mat. Fis. Univ. Modena 48, 217–223.

    MATH  MathSciNet  Google Scholar 

  • Barquins, M., and M. Ciccotti. (1997). “On the kinetics of peeling of an adhesive tape under a constant imposed load,” Int. J. Adhesion and Adhesives 17, 66–68.

    Google Scholar 

  • Burridge, R. and J.B. Keller. (1978). “Peeling, slipping and cracking-Some one-dimensional free-boundary problems in mechanics,” SIAM Rev. 20, 31–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Chandra, N., H. Li, C. Shet, and H. Ghonem. (2002). “Some issues in the application of cohesive zone models for metallic-ceramic interfaces,” Int. J. Solids Structures 39, 2827–2855.

    Article  MATH  Google Scholar 

  • Chowdhury, S.R. and R. Narasimhan. (2000). “A cohesive finite element formulation for modelling fracture and delamination of solids,” Sadhana 25, 561–587.

    Google Scholar 

  • Ciccotti, M., Giorgini, B., and M. Barquins. (1998). “Stick-slip in the peeling of an adhesive tape: evolution of theoretical model,” Int. J. Adhesion and Adhesives 18, 35–40.

    Article  Google Scholar 

  • Ericksen, J.L. (1991). Introduction to the Thermodynamics of Solids. Chapman & Hall: London.New York.Tokyo.Melbourne.Madras.

    MATH  Google Scholar 

  • Federico, F., Lupoi, A., and P. Podio-Guidugli. (1996). “Il peeling dei geosintetici. Aspetti teorici, sperimentali e normativi,” Res. Rep. 23.6.96, Department of Civil Engineering, University of Rome “Tor Vergata”.

    Google Scholar 

  • Frémond, M. (1988). “Contact with adhesion,” Chapter IV of Topics in Nonsmooth Mechanics, Birkhäuser Verlag: Basel.Boston.Berlin.

    Google Scholar 

  • Gurtin, M.E. (1995). “The nature of configurational forces,” Arch. Rational Mech. Anal. 131, 67–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E. (2000). Configurational Forces as Basic Concepts of Continuum Physics. Springer-Verlag: Berlin.

    Google Scholar 

  • Gurtin, M.E., and Podio-Guidugli, P. (1996a). “Configurational forces and the basic laws for crack propagation,” J. Mech. Phys. Solids 44, 905–927.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., and Podio-Guidugli, P. (1996b). “On configurational inertial forces at a phase interface,” J. Elasticity 44, 255–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., and Podio-Guidugli, P. (1998). “Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving,” J. Mech. Phys. Solids 46, 1–36.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M.E., and A. Struthers. (1990). “Multiphase thermomechanics with interfacial structure. 3. Evolving phase boundaries in the presence of bulk deformation,” Arch. Rational Mech. Anal. 112, 97–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, D.C., and S. Yue. (1995). “Deterministic chaos in failure dynamics: dynamics of peeling of adhesive tapes,” Phys. Rev. Letters 74, 254–257.

    Article  Google Scholar 

  • Podio-Guidugli, P. (1996). “Peeling tapes,” invited talk at the conference on “Recent Developments in Solid Mechanics” in honor of Wolf Altman, Rio de Janeiro, July 31st, 1996.

    Google Scholar 

  • Podio-Guidugli, P. (1997). “Inertia and invariance,” Ann. Mat. Pura. Appl. (IV) 172, 103–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, K.-H., and K.-S. Kim. (1993). “Stick-slip in the thin film peel test-I. The 90° peel test,” Int. J. Solids Structures 30, 1789–1806.

    Article  Google Scholar 

  • Wu, C.H. (1992). “Cohesive elasticity and surface phenomena,” Q. Appl. Math. 50, 73–103.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Podio-Guidugli, P. (2005). Peeling Tapes. In: Steinmann, P., Maugin, G.A. (eds) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-26261-X_25

Download citation

Publish with us

Policies and ethics