Adaptation to Chronic Hypoxia During Diet-Induced Ketosis

  • Michelle A. Puchowicz
  • Douglas S. Emancipator
  • Kui Xu
  • Danielle L. Magness
  • Obinna I. Ndubuizu
  • W. David Lust
  • Joseph C. LaManna
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)


It is recognized that brain oxygen deprivation results in increased glycolysis and lactate accumulation. Moreover, glucose metabolism is altered during starvation or diet, resulting in increased plasma ketones (acetoacetate + β-hydroxybutyrate; BHB). We investigated glucose and lactate adaptation to hypoxia in concurrence with diet-induced ketosis. Male Wistar rats were fed standard (STD), ketogenic (high fat; KG), or carbohydrate-rich (low fat; CHO) diets for 3 wks and then exposed to hypobaric (0.5 ATM) or normobaric atmosphere for 3 wks while on their diets. Lactate, ketones, and glucose concentrations were measured in plasma (mM) and brain tissue (mmol/g). Plasma and tissue ketone levels were elevated up to 12-fold in the KG fed groups compared with other groups (STD and CHO), with the hypoxic KG group reaching the highest levels (2.6 ± 1.3 mM and 0.3 ± 0.1 mmol/g; mean ± SD). Tissue lactate levels in the hypoxic ketotic rats (4.7 ± 1.3 mM) were comparable with normoxic STD (5.0 ± 0.7 mM) and significantly lower (ANOVA P<.05) than the hypoxic STD rats (6.1 ± 1.0 mM). These data indicate that adaptation to hypoxia did not interfere with ketosis, and that ketosis during hypoxia may lower lactate levels in brain, suggesting decreased glycolysis or increased glucose disposal.


Lactate Level Diet Group Ketogenic Diet Chronic Hypoxia Hypobaric Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    S. I. Harik, R. A. Behmand, and J. C, LaManna, Hypoxia increases glucose transport at blood-brain barrier in rats, J. Appl. Physiol. 77, 896–901 (1994).PubMedGoogle Scholar
  2. 2.
    S. I. Harik, W. D. Lust, S. C. Jones, K. L. Lauro, S. Pundik, and J. C. LaManna, Brain glucose metabolism in hypobaric hypoxia, J. Appl. Physiol. 79, 136–140 (1995).PubMedGoogle Scholar
  3. 3.
    J. C. LaManna, Hypoxia/ischemia and the pH paradox, Adv. Exp. Med. Biol. 388, 283–292 (1996).PubMedGoogle Scholar
  4. 4.
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill Jr., Brain metabolism during fasting, J. Clin. Invest. 46, 1589–1595 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Sokoloff, Metabolism of ketone bodies by the brain, Ann. Rev. Med. 24, 271–280 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    M. C. McKenna, J. T. Tildon, J. H. Stevenson, R. Boatright, and S. Huang, Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate, Develop. Neurosci. 15, 320–329 (1993).Google Scholar
  7. 7.
    J. M. Freeman, M. T. Kelly, and J. B. Freeman, The Epilepsy Diet Treatment, 2nd edition (Demos Vermande, New York, 1996).Google Scholar
  8. 8.
    G. F. J. Cahill, and O. E. Owen, Starvation and survival, Trans. Am. Clin. Climat. Ass. 79, 13–18 (1967).Google Scholar
  9. 9.
    N. B. Ruderman, P. S. Ross, M. Berger, and M. N. Goodman, Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats, Biochem. J. 138, 1–10 (1974).PubMedGoogle Scholar
  10. 10.
    S. I. Harik, A. S. Al-Mudallal, J. C. LaManna, W. D. Lust, and B. E. Levin, Ketogenic diet and the brain, Ann. NY Acad. Sci. 835, 218–224 (1997).PubMedGoogle Scholar
  11. 11.
    J. C. LaManna, K. A. McCracken, and K. P. Strohl, Changes in regional cerebral blood flow and sucrose space after 3–4 weeks of hypobaric hypoxia (0.5 ATM), Adv. Exp. Med. Biol. 248, 471–477 (1989).PubMedGoogle Scholar
  12. 12.
    J. C. LaManna, L. M. Vendel, and R. M. Farrell, Brain adaptation to chronic hypobaric hypoxia in rats, J. Appl. Physiol. 72, 2238–2243 (1992).PubMedGoogle Scholar
  13. 13.
    U. Ponten, R. A. Ratcheson, L. G. Salford, and B. K. Siesjo, Optimal freezing conditions for cerebral metabolites in rats, J. Neurochem. 21, 1127–1138 (1973).PubMedGoogle Scholar
  14. 14.
    S. G. Hasselbalch, G. M. Knudsen, J. Jakobsen, L. P. Hageman, S. Holm, and O. B. Paulson, Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans, Am. J. Physiol. 268, E1161–E1166 (1995).PubMedGoogle Scholar
  15. 15.
    D. Z. Gerhart, B. E. Enerson, O. Y. Zhdankina, R. L. Leino, and L. R. Drewes, Expression of the monocarboxylate transporter MCT2 by rat brain glia, Glia 22, 272–281 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    J. W. Pan, T. L. Rothman, K. L. Behar, D. T. Stein, and H. P. Hetherington, Human brain beta-hydroxybutyrate and lactate increase in fasting-induced ketosis, J. Cereb. Blood Flow Metab. 20(10), 1502–1507Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michelle A. Puchowicz
  • Douglas S. Emancipator
  • Kui Xu
  • Danielle L. Magness
  • Obinna I. Ndubuizu
  • W. David Lust
  • Joseph C. LaManna

There are no affiliations available

Personalised recommendations