Skip to main content

Effects of Insulin and Catecholamines on Inotropy and Oxygen Uptake

Best perfusate for skeletal muscles

  • Conference paper
  • 1851 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

The purpose of this study is to identify the best perfusate after blood for maintaining skeletal muscle inotropy, muscle peak oxygen consumption (peak VO2), and oxygen consumption at rest (resting VO2) in in situ isolated canine gastrocnemius-plantaris muscle. Rejuvenated red cells suspended in perfusate at hematocrit 30% and 45%, perfusate contained insulin (100 µU·ml−1), adrenalin (0.3 and 3 ng·ml−1), and noradrenaline (3 ng·ml−1). Insulin significantly augmented resting VO2 and contracting muscle peak VO2, and developed isometric twitch tension at 4 Hz, compared with control. Insulin-induced increase in resting muscle VO2 was abrogated by catecholamines. In addition to insulin and catecholamines, the developed twitch tension increased significantly by 178% with the accompanied increase in flow rate. O2 cost (peak VO2 / tension) significantly decreased by 52%. The developed tension did not correlate with O2 delivery but with flow rate and peak VO2 of contracting muscle. We successfully identified the characteristics of the best perfusate after blood. Our results suggest that the positive inotropy by insulin and catecholamines is attributed partly to an O2 delivery-independent increase in flow to contracting muscle and redistribution of flow within the contracting muscle, which suffered from low perfusion by perfusate containing rejuvenated red cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kohzuki, Y. Enoki, K. Matsumura, S. Sakata, and S. Shimizu, Flow-dependent influence of high-O2-affinity erythrocytes on peak VO2 in exercising muscle in situ, J. Appl. Physiol. 80(3), 832–838 (1996).

    PubMed  CAS  Google Scholar 

  2. H. Kohzuki, Y. Enoki, S. Sakata, S. Shimizu, and K. Matsumura, Influence of high O2 affinity red cells on developed tension-VO2 relation in skeletal muscle, (in Japanese) J. Physiol. Soc. Japan 53(Suppl), 13 (1990).

    Google Scholar 

  3. H. Kohzuki, Y. Enoki, S. Shimizu, and S. Sakata, High blood O2 affinity and relationship of O2 uptake and delivery in resting muscle, Respir. Physiol. 92(2), 197–208 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. D. Dawson, M. A. Vincent, E. J. Barrett, S. Kaul, A. Clark, H. Leong-Poi, and J. R. Lindner, Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contract ultrasound, Am. J. Physiol. Endocrinol. Metab. 282(3), E714–E720 (2002).

    PubMed  CAS  Google Scholar 

  5. M. G. Clark, S. Rattigan, L. H. Clerk, M. A. Vincent, A. D. H. Clark, J. M. Youd, and J. M. B. Newman, Nutritive and non-nutritive blood flow: rest and exercise, Acta Physiol. Scand. 168(4), 519–530 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. J. H. Williams, and W. S. Barnes, The positive inotropic effect of epinephrine on skeletal muscle: a brief review, Muscle & Nerve 12(12), 968–975 (1989).

    Article  CAS  Google Scholar 

  7. R. J. Murphy, P. F. Gardiner, G. Rousseau, M. Bouvier, and L. Beliveau, Chronic beta-blockade increases skeletal muscle beta-adrenergic-receptor density and enhances contractile force, J. Appl. Physiol. 83(2), 459–465 (1997).

    PubMed  CAS  Google Scholar 

  8. J. A. Rall, Energetic aspects of skeletal muscle contraction: Implications of fiber types, Exercise Sport Sci. Rev. 13, 33–74 (1985).

    CAS  Google Scholar 

  9. M. Schmitt, P. Meunier, A. Rochas, and J. Chatonnet, Catecholamines and oxygen uptake in dog skeletal muscle in situ, Pflügers Arch. 345(2), 145–158 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. C. D. Marsden, and J. C. Meadows, The effect of epinephrine on the contraction of human muscle, J. Physiol. 207(2), 429–448 (1970).

    PubMed  CAS  Google Scholar 

  11. E. A. Richter, N. B. Ruderman, and H. Galbo, Alpha and beta-adrenergic effects on metabolism in contracting, perfused muscle, Acta Physiol. Scand. 116(3), 215–222 (1982).

    PubMed  CAS  Google Scholar 

  12. B. Folkow, and H. D. Halicka, A comparison between “red” and “white” muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise, Microvasc. Res. 1, 1–14 (1968).

    Article  Google Scholar 

  13. E. Holmberg, and B. Waldeck, The effect of insulin on skeletal muscle contractions and its relation to the effect produced by beta-adrenoceptor stimulation, Acta Physiol. Scand. 109(2), 225–229 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. J. A. Flatman, and T. Clausen, Combined effects of epinephrine and insulin on active electrogenic Na+-K+ transport in rat soleus muscle, Nature 281(5732), 580–581 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. M. T. Crow, and M. J. Kushmerick, Phosphorylation of myosin light chains in mouse fast-twitch muscle associated with reduced actomyosin turnover rate, Science 217(4562), 835–837 (1982).

    PubMed  CAS  Google Scholar 

  16. M. T. Crow, and M. J. Kushmerick, Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle, J. Biol. Chem. 257(5), 2121–2124 (1982).

    PubMed  CAS  Google Scholar 

  17. J. K. Barclay, A delivery-independent blood flow effect on skeletal muscle fatigue, J. Appl. Physiol. 61(3), 1084–1090 (1986).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Kohzuki, H., Fujino, H. (2005). Effects of Insulin and Catecholamines on Inotropy and Oxygen Uptake. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_7

Download citation

Publish with us

Policies and ethics